# 2022/23 Lake water quality and ecology monitoring



#### **Contents**

- 2022/23 Lake water quality and ecology monitoring
  - Contents
- Disclaimer
- Overview
  - Monitoring network
  - Monitoring objectives
  - Monitoring results
- Methods
  - o Analytical methods for physicochemical and microbiological water quality
  - State assessments
  - Trend assessments
  - LakeSPI assessments
- · State assessment results
  - Trophic level index (TLI)
  - o Natural Resources Plan thresholds (NRP)
  - National objectives framework (NOF)
- Trend assessment results
  - Ammoniacal nitrogen
  - Total nitrogen
  - Total phosphorus
  - Visual clarity
  - Chlorophyll a
- LakeSPI assessment results
- Supplementary data results
  - Nitrogen
  - Phosphorus
  - Phytoplankton
  - Water clarity
  - Sediment
  - o Other water quality variables
- Resources
  - Useful Links
  - References
- Appendix
  - Monitoring details

Contents Page 2 of 38

#### **Disclaimer**

This report has been prepared by the Environment Group of Greater Wellington (GW) and as such does not constitute Council policy.

In preparing this report, the authors have used the best currently available data and have exercised all reasonable skill and care in presenting and interpreting these data. Nevertheless, GW does not accept any liability, whether direct, indirect, or consequential, arising out of the provision of the data and associated information within this report. Furthermore, as GW endeavours to continuously improve data quality, amendments to data included in, or used in the preparation of, this report may occur without notice at any time.

GW requests that if excerpts or inferences are drawn from this report for further use, due care should be taken to ensure the appropriate context is preserved and is accurately reflected and referenced in subsequent written or verbal communications. Any use of the data and information enclosed in this report, for example, by inclusion in a subsequent report or media release, should be accompanied by an acknowledgement of the source.

For the latest available results go to the GW environmental data hub.

#### **Overview**

Greater Wellington (GW) routinely monitors water quality in two lakes in the Wellington Region, Lake Wairarapa and Lake Ōnoke. Monitoring in Lake Wairarapa commenced in 1994 and the programme remained largely unchanged until 2012/13 when changes in monitoring frequency and some site locations and variables were implemented (see <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2014">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2014">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2013</a> and <a href="Cockeram & Perrie 2013">Cockeram & Perrie 2

In 2011 assessments of ecological condition, based on submerged macrophyte community structure and composition, were introduced for Lakes Kohangapiripiri, Kohangatera and Pounui. Assessments of macrophyte communities, termed LakeSPI (Submerged Plant Indicator) have since been expanded to other lakes and lagoons in the Wellington Region: Bartons Lagoon, Boggy Pond, Lake Nganoke, Lake Ngarara, Lake Waiorongomai, Matthews Lagoon and Turners Lagoon (de Winton et al. 2022). LakeSPI assessments are planned to occur every three-five years.

Disclaimer Page 3 of 38

# **Monitoring network**

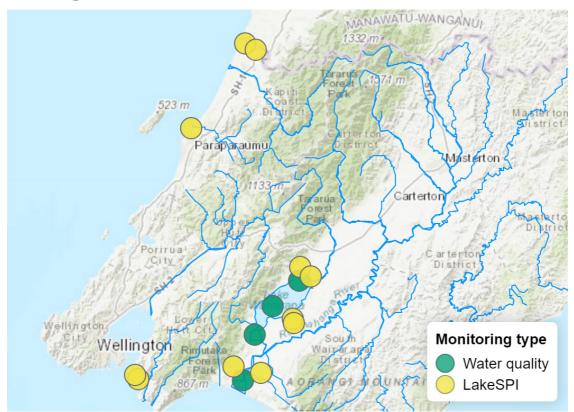



Figure 1: Locations of lake water quality and ecology monitoring sites.

Table 1: Lake attributes and catchment information.

| Lake      | Max depth (approx.) | Lake<br>area | Catchment<br>area | Catchment landcover                                                                                                                                                         |
|-----------|---------------------|--------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wairarapa | 2.5 m               | 7,850 ha     | 57,245 ha         | <ul> <li>Pasture 54.0%</li> <li>Indigenous forest and scrub 43.9%</li> <li>Urban 0.4%</li> <li>Other 1.7%</li> </ul>                                                        |
| Ōnoke     | 5.5 m               | 622 ha       | 341,744 ha        | <ul> <li>Pasture 64.0%</li> <li>Indigenous forest and scrub 27.5%</li> <li>Exotic forest 3.7%</li> <li>Horticulture 1.0%</li> <li>Urban 0.7%</li> <li>Other 3.1%</li> </ul> |

Overview Page 4 of 38

#### **Monitoring objectives**

- 1. Assist in the detection of spatial and temporal changes in the condition of selected lakes;
- 2. Contribute to our understanding of freshwater biodiversity in the Wellington Region;
- 3. Determine the suitability of lakes for designated uses;
- 4. Provide information to assist in targeted investigations where remediation or mitigation of poor water quality or ecosystem health is desired; and
- 5. Provide information required to determine the effectiveness of regional plans and policies.

# **Monitoring results**

**State assessments** presents current lake status as assessed by the Trophic Lake Index (TLI), GW Natural Resources Plan (NRP), and National Policy Statement for Freshwater Management National Objectives Framework (NOF). Links are provided with each for more information.

**Trend assessments** estimates the rate of change and direction of key lake water quality data at each site over periods of 5-, 10-, 15-, and all available- years.

**Supplementary data** provides annual summaries of dissolved oxygen, water temperature, pH, conductivity, visual clarity, turbidity, suspended solids, chlorophyll *a*, and dissolved and total nutrients.

Overview Page 5 of 38

#### **Methods**

# Analytical methods for physicochemical and microbiological water quality

Lake Wairarapa monitoring sites are accessed by boat and the Lake Ōnoke monitoring sites (including the two upstream monitoring sites) are accessed by wading from the lake or river edge. Water samples are collected in accordance with the sub-surface grab method for sampling isothermal lakes described in Smith et al. (1989) and in the case of Lake Ōnoke, a 'grab pole' is used to collect water samples in an effort to minimise the potential effects of re-suspension of lake-bed sediments (caused by wading) on the samples. Note that the sub-surface grab method differs from protocols outlined in Burns et al. (2000) for the sampling of isothermal lakes.

Field measurements (conductivity, dissolved oxygen and temperature) are taken using a YSI DSS field meter which is calibrated on the day of sampling. Secchi disc measurement methodology is consistent with the procedure outlined in <u>Burns et al. (2000)</u> except that an underwater viewer is not used. Note that all field measurements collected from Lake Ōnoke (and upstream sites) are made from a 'wading position', although care is taken to minimise any disturbance of lakebed sediments.

Water samples requiring laboratory analysis are stored on ice upon collection and couriered overnight to RJ Hill Laboratories in Hamilton. The variables monitored and current analytical methods are summarised in <a href="Appendix Table A1">Appendix Table A1</a>. All lake water samples collected for dissolved nutrient analysis are filtered in the laboratory.

Methods Page 6 of 38

#### **State assessments**

See <u>Hickson-Rowden and Perrie (2018)</u> for the finer details on the application of the assessments outlined below.

#### **Trophic Level Index (TLI)**

Table 2: Classification of lake trophic status using the TLI Burns et al. (1999).

| Trophic status<br>(nutrient<br>enrichment) | TLI         | Chlorophyll <i>a</i><br>(mg/m³) | Secchi<br>depth (m) | Total<br>phosphorus<br>(g/m³) | Total<br>nitrogen<br>(g/m³) |
|--------------------------------------------|-------------|---------------------------------|---------------------|-------------------------------|-----------------------------|
| Ultra-microtrophic (practically pure)      | 0.0-<br>1.0 | 0.13-0.33                       | 33-25               | 0.00084-0.0018                | 0.016-0.034                 |
| Microtrophic (very low)                    | 1.0-<br>2.0 | 0.33-0.82                       | 25-13               | 0.0018-0.0041                 | 0.034-0.073                 |
| Oligotrophic (low)                         | 2.0-<br>3.0 | 0.82-2.0                        | 15-7.0              | 0.0041-0.0090                 | 0.073-0.157                 |
| Mesotrophic<br>(medium)                    | 3.0-<br>4.0 | 2.0-5.0                         | 7.0-2.8             | 0.0090-0.0200                 | 0.157-0.337                 |
| Eutrophic (high)                           | 4.0-<br>5.0 | 5.0-12                          | 2.8-1.1             | 0.0200-0.0430                 | 0.337-0.725                 |
| Supertrophic (very high)                   | 5.0-<br>6.0 | 12-31                           | 1.1-0.4             | 0.0430-0.0960                 | 0.725-1.558                 |
| Hypertrophic<br>(extremely high)           | >6.0        | >31                             | <0.4                | <0.0960                       | >1.558                      |

Methods Page 7 of 38

# **Natural Resources Plan (NRP)**

Table 3: Selected attributes and narratives from table 3.5 of GW's <u>NRP</u>. Note that monitoring data should be analysed separately for closed periods and open periods for intermittently closed and open lakes or lagoons (ICOLLs), such as Lake Ōnoke.

| Attribute                  | Lake type                          | Annual<br>summary | Threshold |
|----------------------------|------------------------------------|-------------------|-----------|
| Total Nitrogen (mg/m³)     | Seasonally stratified and brackish | Median            | ≤350      |
|                            | Polymictic                         | Median            | ≤500      |
| Total Phosphorus (mg/m³)   |                                    | Median            | ≤20       |
| Phytoplankton              |                                    | Median            | ≤5        |
| (mg chl-a/m <sup>3</sup> ) |                                    | Max               | ≤25       |

Methods Page 8 of 38

#### **National Policy Statement for Freshwater Management (NPS-FM)**

Attribute states and guideline values taken from the <u>National Policy Statement for Freshwater</u> <u>Management 2020</u> National Objectives Framework (NOF). For Lake Ōnoke that is intermittently open to the sea, monitoring data should be analysed separately for closed periods and open periods. Where there are multiple attributes for Chlorophyll *a* and ammoniacal nitrogen, the worst state determines the overall band in the maps above

Table 4: Chlorophyll a (mg/m²) NOF state bands.

| Attribute<br>state | Annual<br>median | Annual<br>maximum | Description                                                                                                                                                                                                                                                                                                                           |
|--------------------|------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                  | ≤2               | ≤10               | Lake ecological communities are healthy and resilient, similar to natural reference conditions.                                                                                                                                                                                                                                       |
| В                  | >2 and<br>>5     | >10 and<br>>25    | Lake ecological communities are slightly impacted by additional algal and/or plant growth arising from nutrient levels that are elevated above natural reference conditions.                                                                                                                                                          |
| С                  | >5 and<br>>12    | >25 and<br>>60    | Lake ecological communities are moderately impacted by additional algal and plant growth arising from nutrient levels that are elevated well above natural reference conditions. Reduced water clarity is likely to affect habitat available for native macrophytes.                                                                  |
| D                  | >12              | >60               | National bottom line. Lake ecological communities have undergone or are at high risk of a regime shift to a persistent, degraded state (without native macrophyte/seagrass cover), due to impacts of elevated nutrients leading to excessive algal and/or plant growth, as well as from losing oxygen in bottom waters of deep lakes. |

Methods Page 9 of 38

Table 5: Total phosphorus  $(g/m^3)$  NOF state bands.

| Attribute<br>state | Annual<br>median | Description                                                                                                                                                                                                                                                                                                                                  |
|--------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А                  | ≤10              | Lake ecological communities are healthy and resilient, similar to natural reference conditions.                                                                                                                                                                                                                                              |
| В                  | >10 and<br>>20   | Lake ecological communities are slightly impacted by additional algal and/or plant growth arising from nutrient levels that are elevated above natural reference conditions.                                                                                                                                                                 |
| С                  | >20 and<br>>50   | Lake ecological communities are moderately impacted by additional algal and plant growth arising from nutrient levels that are elevated well above natural reference conditions.                                                                                                                                                             |
| D                  | >50              | <b>National bottom line.</b> Lake ecological communities have undergone or are at high risk of a regime shift to a persistent, degraded state (without native macrophyte/seagrass cover), due to impacts of elevated nutrients leading to excessive algal and/or plant growth, as well as from losing oxygen in bottom waters of deep lakes. |

Methods Page 10 of 38

Table 6: **Total nitrogen (g/m³)** NOF state bands. Attribute states are calculated differently for polymictic lakes (polymictic) and seasonally stratified & brackish lakes (brackish). See this Land Air Water Aotearoa (LAWA) <u>factsheet</u> for more information.

| Attribute<br>state | Annual<br>median<br>(polymictic) | Annual<br>median<br>(brackish) | Description                                                                                                                                                                                                                                                                                                                           |
|--------------------|----------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α                  | ≤300                             | ≤160                           | Lake ecological communities are healthy and resilient, similar to natural reference conditions.                                                                                                                                                                                                                                       |
| В                  | >300 and >500                    | >160 and<br>>350               | Lake ecological communities are slightly impacted<br>by additional algal and/or plant growth arising from<br>nutrient levels that are elevated above natural<br>reference conditions.                                                                                                                                                 |
| С                  | >500 and >800                    | >350 and<br>>750               | Lake ecological communities are moderately impacted by additional algal and plant growth arising from nutrient levels that are elevated well above natural reference conditions.                                                                                                                                                      |
| D                  | >800                             | >750                           | National bottom line. Lake ecological communities have undergone or are at high risk of a regime shift to a persistent, degraded state (without native macrophyte/seagrass cover), due to impacts of elevated nutrients leading to excessive algal and/or plant growth, as well as from losing oxygen in bottom waters of deep lakes. |

Methods Page 11 of 38

Table 7: **Ammonia (pH adjusted mg/L)** NOF state bands. Numeric attribute state is based on pH 8 and temperature of 20°C.

| Attribute<br>state | Annual<br>median | Annual 95 <sup>th</sup><br>percentile | Description                                                                                                                                                                 |
|--------------------|------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А                  | ≤0.03            | ≤0.05                                 | 99% species protection level: No observed effect on any species tested.                                                                                                     |
| В                  | >0.03 and >0.24  | >0.05 and >0.4                        | 95% species protection level: Starts impacting occasionally on the 5% most sensitive species.                                                                               |
| С                  | >0.24 and >1.3   | >0.4 and >2.2                         | <b>National bottom line.</b> 80% species protection level:<br>Starts impacting regularly on the 20% most sensitive<br>species (reduced survival of most sensitive species). |
| D                  | >1.3             | >2.2                                  | Starts approaching acute impact level (that is, risk of death) for sensitive species.                                                                                       |

#### **Trend assessments**

Trends assessments are estimated at each site using monthly data over periods of 5-, 10-, and 15-years, where sufficient data is available. These results are then categorised into differing levels of trend direction likelihood. Series with too many censored values (Appendix Table A1) can still have a trend direction estimated but are unable to have a reliable trend rate estimated and this is shown as 'N/A' in the map hover labels and tables. Site-periods with too few data for reliable estimates of both direction and rate are shown as "not assessed".

The trend methodology follows the approach as described in this <u>LAWA trends factsheet</u> with exceptions:

- Due to monitoring network interruptions, we use a slightly lower data requirement threshold of 85% (i.e., at least 85% of all possible months or quarters worth of data in that period) rather than the 90% threshold for trends on LAWA.
- Series with too many censored values (<u>below lab detection limits</u>) can still have a trend direction estimated on LAWA but are unable to have a reliable trend rate estimated. In this report we present such trends as "Indeterminate".

Methods Page 12 of 38

#### LakeSPI assessments

Submerged aquatic plant communities are assessed using the nationally accepted LakeSPI (Submerged Plant Index) methodology developed by <u>Clayton and Edwards (2006)</u>. This involves scuba divers assessing 11 metrics over a 2 m wide transect from the shore to the deepest vegetation limit at several sites which are representative of the lake.

The first LakeSPI surveys were carried out in autumn 2011 and are intended to be repeated at fiveyearly intervals except where more frequent surveys are warranted.

Application of the LakeSPI method results in three indices expressed as a percentage of expected pristine state:

- A native condition index (ie, the diversity and quality of the indigenous flora);
- An invasive condition index (ie, the degree of impact by invasive weed species); and
- An overall LakeSPI index that synthesises components of both the native condition and invasive condition indices to provide an overall indication of lake ecological condition.

The LakeSPI index is used to place the lake vegetation into one of five categories of lake condition listed in the table below (Verburg et al. 2010):

| Lake ecological condition | LakeSPI index (% of expected pristine state) |  |  |  |  |
|---------------------------|----------------------------------------------|--|--|--|--|
| Non-vegetated             | 0                                            |  |  |  |  |
| Poor                      | >0-20                                        |  |  |  |  |
| Moderate                  | >20-50                                       |  |  |  |  |
| High                      | >50-75                                       |  |  |  |  |
| Excellent                 | >75                                          |  |  |  |  |

Each sub-component condition index is also rated against <u>National Policy Statement for</u> <u>Freshwater Management 2020 NOF guidelines:</u>

| Attribute state | <b>Native Condition index</b> | Invasive Impact index |
|-----------------|-------------------------------|-----------------------|
| Α               | >75                           | 0*                    |
| В               | >50 and >75                   | >1 and >25            |
| С               | >20 and >50                   | >25 and >90           |
| D               | ≤20                           | ≥90                   |

<sup>\*</sup>Note Invasive Impact index scores for non-vegetated lakes are not included in the A band.

Methods Page 13 of 38

#### **State assessment results**

The following sections present maps of state assessments under each framework. Details on each assessment framework and calculations are available in <u>Hickson-Rowden and Perrie (2018)</u> and the state assessments methods section.

#### **Trophic level index (TLI)**

The Trophic Level Index (TLI) measures water quality status of New Zealand lakes using four variables; chlorophyll a, Secchi depth (water clarity), total phosphorus and total nitrogen. The maps show the overall mean TLI score for each lake and the table includes each of the four TLI variables. These values are calculated for the periods July 2022 to June 2023 and the three-year rolling mean period July 2020 to June 2023 (note the variable number of samples between sites).

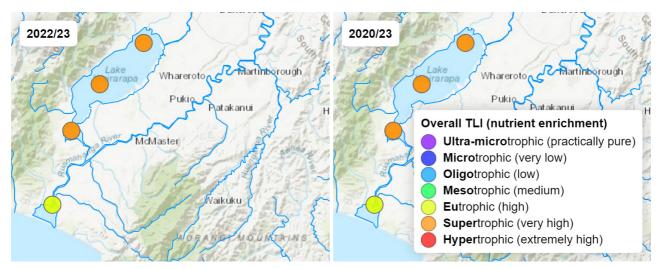



Figure 2: TLI states for the three year period 2020/21 to 2022/23 and latest one year period 2022/23

Table 8: TLI overall and variable scores, abbreviated trophic level classes are provided in brackets.

| Lake      | Site           | Years   | No. samples | Overall TLI | Chlorophyll a | Secchi depth | Total phosphorus | Total nitrogen |
|-----------|----------------|---------|-------------|-------------|---------------|--------------|------------------|----------------|
| Wairarapa | Site 2 - stump | 2020/23 | 31          | 5.3 (Super) | 4.9 (Eu)      | 6.5 (Hyper)  | 5.7 (Super)      | 4.3 (Eu)       |
| Wairarapa | Site 2 - stump | 2022/23 | 9           | 5.4 (Super) | 5.3 (Super)   | 6.3 (Hyper)  | 5.8 (Super)      | 4.3 (Eu)       |
| Wairarapa | Middle         | 2020/23 | 31          | 5.2 (Super) | 4.8 (Eu)      | 6.4 (Hyper)  | 5.6 (Super)      | 4.1 (Eu)       |
| Wairarapa | Middle         | 2022/23 | 9           | 5.3 (Super) | 5.1 (Super)   | 6.2 (Hyper)  | 5.7 (Super)      | 4.2 (Eu)       |
| Wairarapa | Alsops Bay     | 2020/23 | 23          | 5.3 (Super) | 4.9 (Eu)      | 6.4 (Hyper)  | 5.6 (Super)      | 4.3 (Eu)       |
| Wairarapa | Alsops Bay     | 2022/23 | 8           | 5.3 (Super) | 5.2 (Super)   | 6.1 (Hyper)  | 5.6 (Super)      | 4.2 (Eu)       |
| Ōnoke     | Site 1         | 2020/23 | 33          | 4.8 (Eu)    | 3.7 (Meso)    | 6.1 (Hyper)  | 5.1 (Super)      | 4.5 (Eu)       |
| Ōnoke     | Site 1         | 2022/23 | 11          | 5.0 (Eu)    | 3.8 (Meso)    | 6.0 (Hyper)  | 5.5 (Super)      | 4.7 (Eu)       |

State assessment results Page 14 of 38

#### **Natural Resources Plan thresholds (NRP)**

Comparison of lake data against NRP outcomes for the one-year period July 2022 to June 2023.

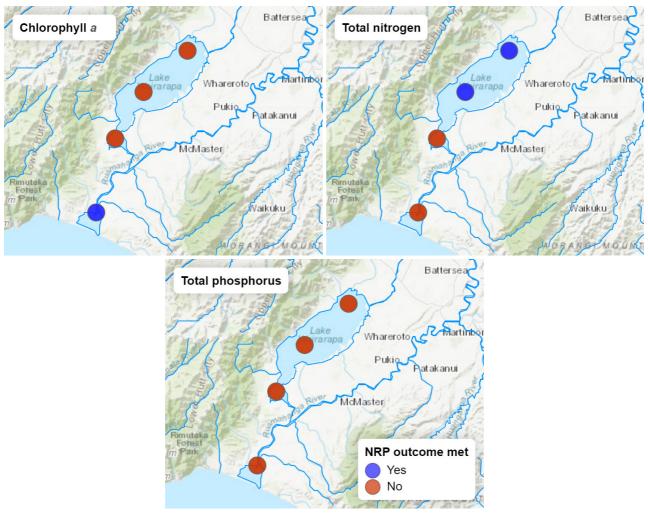



Figure 3: NRP results for the three attributes assessed: Chlorophyll *a*, Total nitrogen, and Total phosphorus.

Table 9: NRP attribute scores, values with asterisks (\*) indicating exceedances of PNRP thresholds. **Note** Lake Ōnoke data is assessed separately when the lake mouth was open versus closed at the time of sampling; only data for when the lake mouth is open is presented on the map.

|           | 1 0,               | ,           |                                |                             |                          |                            |
|-----------|--------------------|-------------|--------------------------------|-----------------------------|--------------------------|----------------------------|
| Lake      | Site               | No. samples | Chlorophyll <i>a</i><br>median | Chlorophyll <i>a</i><br>max | Total nitrogen<br>median | Total phosphorus<br>median |
| Wairarapa | Site 2 - stump     | 9           | 22.0*                          | 58.0*                       | 390                      | 78*                        |
| Wairarapa | Middle             | 9           | 17.0*                          | 43.0*                       | 380                      | 65*                        |
| Wairarapa | Alsops Bay         | 7           | 11.0*                          | 56.0*                       | 365*                     | 65*                        |
| Ōnoke     | Site 1<br>(closed) | 3           | 4.0                            | 35.0*                       | 710*                     | 77*                        |
| Ōnoke     | Site 1 (open)      | 8           | 3.5                            | 12.0                        | 405*                     | 68*                        |

State assessment results Page 15 of 38

#### National objectives framework (NOF)

Comparison of lake data annual summaries against NPS-FM NOF attribute states for the one-year period July 2022 to June 2023.

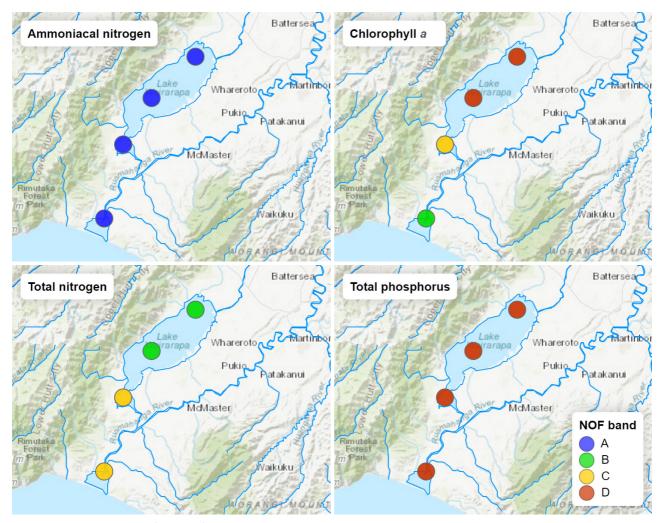



Figure 4: NOF states for the four attributes assessed: Ammoniacal nitrogen, Chlorophyll *a*, Total nitrogen, and Total phosphorus.

Table 10: Individual NOF attribute scores with states provided in brackets. **Note** Lake Ōnoke data is assessed separately when the lake mouth was open versus closed at the time of sampling; only data for when the lake mouth is open is presented on the map.

| Lake      | Site               | No. samples | Туре       | Ammoniacal<br>nitrogen<br>median | Ammoniacal<br>nitrogen 95 <sup>th</sup><br>percentile | Chlorophyll<br>a median | Chlorophyll<br>a max | Total<br>nitrogen<br>median | Total<br>phosphorus<br>median |
|-----------|--------------------|-------------|------------|----------------------------------|-------------------------------------------------------|-------------------------|----------------------|-----------------------------|-------------------------------|
| Wairarapa | Site 2 -<br>stump  | 9           | Polymictic | <0.005 (A)                       | 0.037 (A)                                             | 22 (D)                  | 58 (C)               | 390 (B)                     | 78 (D)                        |
| Wairarapa | Middle             | 9           | Polymictic | <0.005 (A)                       | 0.018 (A)                                             | 17 (D)                  | 43 (C)               | 380 (B)                     | 65 (D)                        |
| Wairarapa | Alsops<br>Bay      | 8           | Brackish   | 0.006 (A)                        | 0.012 (A)                                             | 11 (C)                  | 56 (C)               | 365 (C)                     | 65 (D)                        |
| Ōnoke     | Site 1<br>(closed) | 3           | Brackish   | 0.009 (A)                        | 0.026 (A)                                             | 4 (B)                   | 35 (C)               | 710 (C)                     | 77 (D)                        |
| Ōnoke     | Site 1<br>(open)   | 8           | Brackish   | <0.005 (A)                       | 0.019 (A)                                             | 4 (B)                   | 12 (B)               | 405 (C)                     | 68 (D)                        |

State assessment results Page 16 of 38

#### **Trend assessment results**

Trends assessments are estimated at each site using data over periods of 5-, 10-, and 15- years, where sufficient data is available, and presented in the following maps. See the <u>trend assessments</u> methods section for more information.

In the following tables, the confidence in trend direction is marked by:

- ↑↑: very likely improving
- ↑: likely improving
- →: indeterminate
- ↓: likely degrading
- ↓↓: very likely degrading

**Note** Lake Ōnoke NOF & NRP states in the following tables are only included for when the lake mouth was open at the time of sampling. Trends use all available data.

Trend assessment results Page 17 of 38

# **Ammoniacal nitrogen**

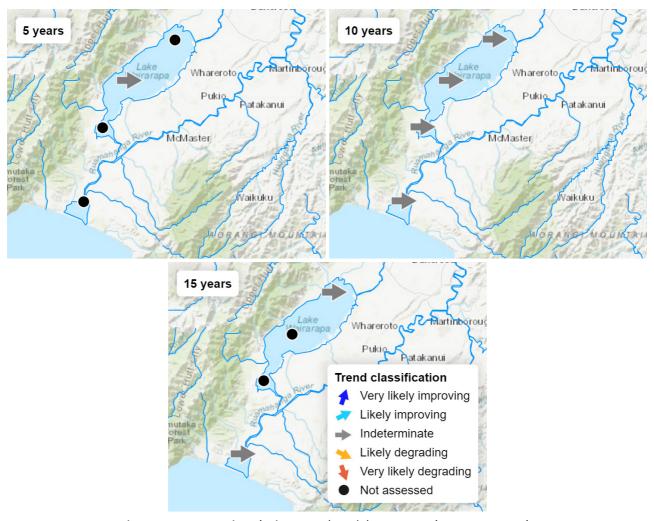



Figure 5: Ammoniacal nitrogen (mg/L) 5, 10, and 15 year trends

Table 11: Ammoniacal nitrogen (mg/L) trend results and applicable state assessments, see the National Objectives Framework (NOF) methods section for full details on assessment criteria.

|           |                |               |           | Trend classification |               | ntion         |
|-----------|----------------|---------------|-----------|----------------------|---------------|---------------|
| Lake      | Site           | Median (3-yr) | NOF state | 5 yr                 | 10 yr         | 15 yr         |
| Ōnoke     | Site 1         | 0.014         | А         |                      | $\rightarrow$ | $\rightarrow$ |
| Wairarapa | Alsops Bay     | 0.005         | А         |                      | $\rightarrow$ |               |
| Wairarapa | Middle         | <0.005        | А         | $\rightarrow$        | $\rightarrow$ |               |
| Wairarapa | Site 2 - stump | <0.005        | А         |                      | $\rightarrow$ | $\rightarrow$ |

Trend assessment results Page 18 of 38

# **Total nitrogen**

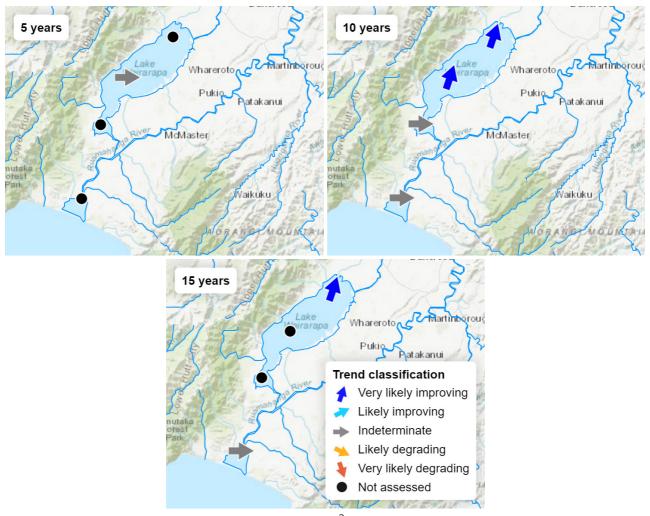



Figure 6: Total nitrogen  $(mg/m^3)$  5, 10, and 15 year trends

Table 12: Total nitrogen (mg/m³) trend results and applicable state assessments, see the <u>National</u> <u>Objectives Framework (NOF)</u>, <u>Trophic Level Index (TLI)</u>, and <u>Natural Resource Plan (RNP)</u> methods sections for full details on assessment criteria.

|           |                |               |           |                          |           | Tr            | end classi    | fication      |
|-----------|----------------|---------------|-----------|--------------------------|-----------|---------------|---------------|---------------|
| Lake      | Site           | Median (3-yr) | NOF state | TLI (3-yr)               | Meets NRP | 5 yr          | 10 yr         | 15 yr         |
| Ōnoke     | Site 1         | 500           | С         | Eutrophic (high)         | No        |               | $\rightarrow$ | $\rightarrow$ |
| Wairarapa | Alsops Bay     | 370           | С         | Supertrophic (very high) | No        |               | $\rightarrow$ |               |
| Wairarapa | Middle         | 330           | В         | Supertrophic (very high) | Yes       | $\rightarrow$ | ↑↑ -27.4      |               |
| Wairarapa | Site 2 - stump | 390           | В         | Supertrophic (very high) | Yes       |               | ↑↑ -23.1      | ↑↑ -15.0      |

Trend assessment results Page 19 of 38

## **Total phosphorus**

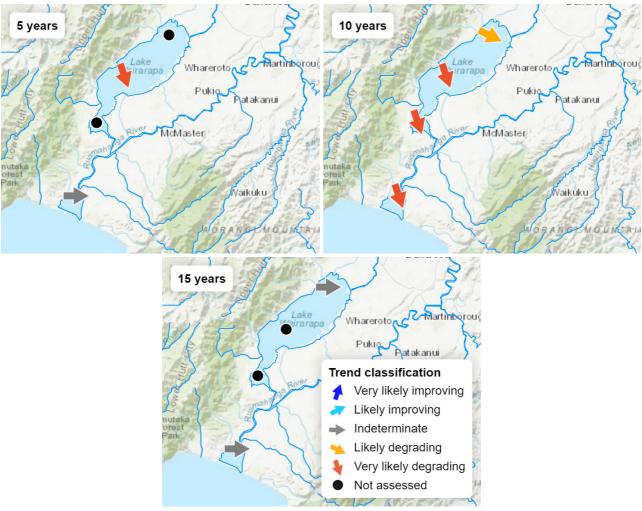



Figure 7: Total phosphorus (mg/m<sup>3</sup>) 5, 10, and 15 year trends

Table 13: Total phosphorus (mg/m³) trend results and applicable state assessments, see the National Objectives Framework (NOF), Trophic Level Index (TLI), and Natural Resource Plan (RNP) methods sections for full details on assessment criteria.

|           |                |               |           |                          |           | Trend         | classifica | ation         |
|-----------|----------------|---------------|-----------|--------------------------|-----------|---------------|------------|---------------|
| Lake      | Site           | Median (3-yr) | NOF state | TLI (3-yr)               | Meets NRP | 5 yr          | 10 yr      | 15 yr         |
| Ōnoke     | Site 1         | 41            | D         | Eutrophic (high)         | No        | $\rightarrow$ | ↓↓ 1.0     | $\rightarrow$ |
| Wairarapa | Alsops Bay     | 71            | D         | Supertrophic (very high) | No        |               | ↓↓ 2.0     |               |
| Wairarapa | Middle         | 66            | D         | Supertrophic (very high) | No        | ↓↓ 5.5        | ↓↓ 2.2     |               |
| Wairarapa | Site 2 - stump | 77            | D         | Supertrophic (very high) | No        |               | ↓ 1.3      | $\rightarrow$ |

Trend assessment results Page 20 of 38

# **Visual clarity**

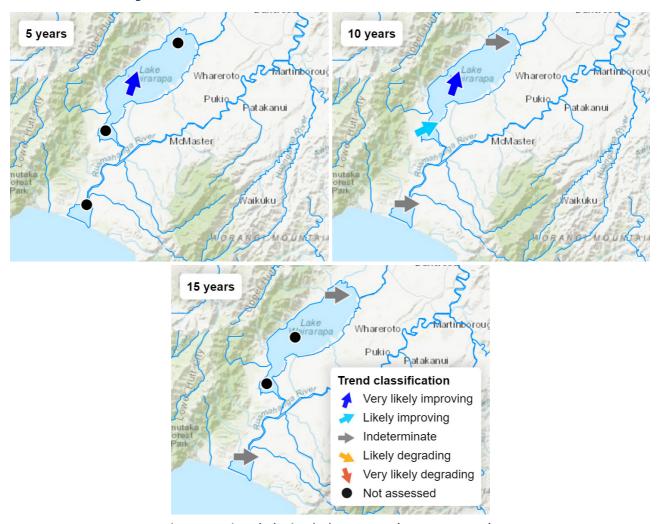



Figure 8: Visual clarity (m) 5, 10, and 15 year trends

Table 14: Visual clarity (m) trend results and applicable state assessments, see the <u>Trophic Level</u> Index (TLI) methods section for full details on assessment criteria.

|           |                |               |                          | Trend classification |               | on            |
|-----------|----------------|---------------|--------------------------|----------------------|---------------|---------------|
| Lake      | Site           | Median (3-yr) | TLI (3-yr)               | 5 yr                 | 10 yr         | 15 yr         |
| Ōnoke     | Site 1         | 0.39          | Eutrophic (high)         |                      | $\rightarrow$ | $\rightarrow$ |
| Wairarapa | Alsops Bay     | 0.34          | Supertrophic (very high) |                      | ↑ 0.01        |               |
| Wairarapa | Middle         | 0.25          | Supertrophic (very high) | ↑↑ 0.02              | ↑↑ 0.01       |               |
| Wairarapa | Site 2 - stump | 0.23          | Supertrophic (very high) |                      | $\rightarrow$ | $\rightarrow$ |

Trend assessment results Page 21 of 38

## Chlorophyll a

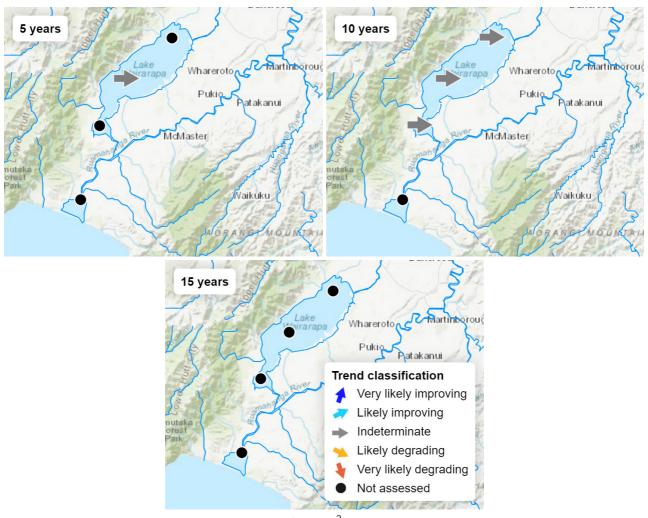



Figure 9: Chlorophyll a (mg/m<sup>3</sup>) 5, 10, and 15 year trends

Table 15: Chlorophyll a (mg/m³) trend results and applicable state assessments, see the <u>National</u> <u>Objectives Framework (NOF)</u>, <u>Trophic Level Index (TLI)</u>, and <u>Natural Resource Plan (RNP)</u> methods sections for full details on assessment criteria.

|           |                |               |           |                          |           | Tren          | d classifi    | cation |
|-----------|----------------|---------------|-----------|--------------------------|-----------|---------------|---------------|--------|
| Lake      | Site           | Median (3-yr) | NOF state | TLI (3-yr)               | Meets NRP | 5 yr          | 10 yr         | 15 yr  |
| Ōnoke     | Site 1         | 3.5           | В         | Eutrophic (high)         | No        |               |               |        |
| Wairarapa | Alsops Bay     | 11.5          | С         | Supertrophic (very high) | No        |               | $\rightarrow$ |        |
| Wairarapa | Middle         | 14.0          | D         | Supertrophic (very high) | No        | $\rightarrow$ | $\rightarrow$ |        |
| Wairarapa | Site 2 - stump | 12.0          | D         | Supertrophic (very high) | No        |               | $\rightarrow$ |        |

Trend assessment results Page 22 of 38

#### LakeSPI assessment results

Submerged aquatic plant communities are assessed using the LakeSPI methodology. Metrics include measures of diversity from the presence of key plant communities, the depth of vegetation growth, and the extent that invasive weeds are represented. See the <u>LakeSPI assessments</u> methods section for more information, and the technical report for additional results.

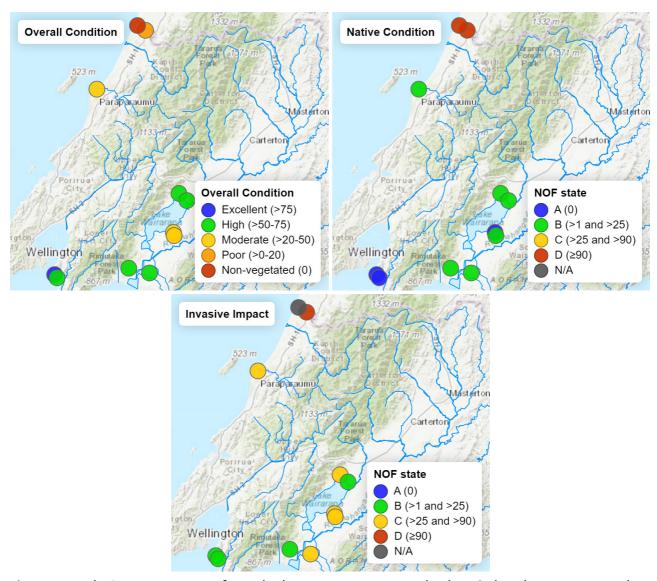



Figure 10: LakeSPI assessments from the latest surveys. Legend values in brackets correspond to: % of best possible for Overall Condition & Native Condition, and % of highest possible Invasive Impact.

LakeSPI assessment results Page 23 of 38

Table 16: LakeSPI assessments from the latest surveys. Values refer to index scores (% of best possible for LakeSPI and Native Condition, and % of worst possible for Invasive Impact). NOF state letters, A (best) to D (worst), are included in brackets where applicable.

| Area        | Waterbody            | Latest survey | Overall condition | LakeSPI | <b>Native Condition</b> | Invasive Impact |
|-------------|----------------------|---------------|-------------------|---------|-------------------------|-----------------|
| Ōtaki       | Lake Waitawa         | 2022          | Poor              | 6       | 0 (D)                   | 96 (D)          |
| Ōtaki       | Lake Waiorongomai    | 2022          | Non-vegetated     | 0       | 0 (D)                   | N/A             |
| Waikanae    | Lake Ngarara         | 2022          | Moderate          | 45      | 64 (B)                  | 58 (C)          |
| Wainuiomata | Lake Kohangapiripiri | 2023          | Excellent         | 88      | 81 (A)                  | 7 (B)           |
| Wainuiomata | Lake Kohangatera     | 2023          | High              | 87      | 79 (A)                  | 6 (B)           |
| Wairarapa   | Lake Pounui          | 2023          | High              | 72      | 52 (B)                  | 7 (B)           |
| Wairarapa   | Lake Nganoke         | 2022          | High              | 68      | 69 (B)                  | 30 (C)          |
| Wairarapa   | Boggy Pond           | 2022          | Moderate          | 44      | 79 (A)                  | 67 (C)          |
| Wairarapa   | Matthew's Lagoon     | 2022          | Moderate          | 34      | 62 (B)                  | 73 (C)          |
| Wairarapa   | Turner's Lagoon      | 2022          | High              | 68      | 74 (B)                  | 31 (C)          |
| Wairarapa   | Barton's Lagoon      | 2022          | High              | 74      | 71 (B)                  | 22 (B)          |

LakeSPI assessment results Page 24 of 38

# **Supplementary data results**

# Nitrogen

#### **Total nitrogen**

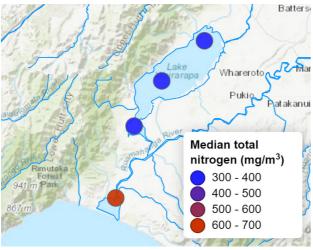



Figure 11: Median total nitrogen (mg/m<sup>3</sup>) results.

Table 17: Total nitrogen results, all units are mg/m<sup>3</sup> unless otherwise noted.

| Lake      | Site           | No. samples | Min | Median | Max   |
|-----------|----------------|-------------|-----|--------|-------|
| Wairarapa | Site 2 - stump | 9           | 200 | 390    | 850   |
| Wairarapa | Middle         | 9           | 150 | 380    | 810   |
| Wairarapa | Alsops Bay     | 8           | 160 | 365    | 900   |
| Ōnoke     | Site 1         | 11          | 340 | 700    | 1,050 |

#### **Ammoniacal nitrogen**

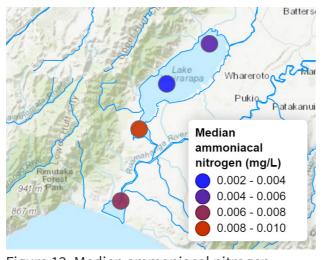



Figure 12: Median ammoniacal nitrogen (mg/L) results.

Table 18: Ammoniacal nitrogen results, all units are mg/L unless otherwise noted.

| Lake      | Site           | No. samples | Min    | Median | Мах   |
|-----------|----------------|-------------|--------|--------|-------|
| Wairarapa | Site 2 - stump | 9           | <0.005 | 0.006  | 0.056 |
| Wairarapa | Middle         | 9           | <0.005 | <0.005 | 0.041 |
| Wairarapa | Alsops Bay     | 8           | <0.005 | 0.010  | 0.015 |
| Ōnoke     | Site 1         | 11          | <0.005 | 0.007  | 0.048 |

Supplementary data results Page 25 of 38

# **Total Kjeldahl nitrogen**

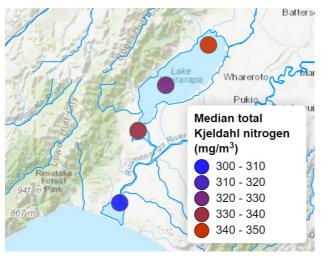



Figure 13: Median total Kjeldahl nitrogen (mg/m³) results.

Table 19: Total kjeldahl nitrogen results, all units are mg/m³ unless otherwise noted.

| Lake      | Site           | No. samples | Min  | Median | Мах |
|-----------|----------------|-------------|------|--------|-----|
| Wairarapa | Site 2 - stump | 9           | 200  | 350    | 830 |
| Wairarapa | Middle         | 9           | <200 | 320    | 720 |
| Wairarapa | Alsops Bay     | 8           | <200 | 330    | 830 |
| Ōnoke     | Site 1         | 11          | <200 | 300    | 510 |

# Nitrite-nitrate nitrogen

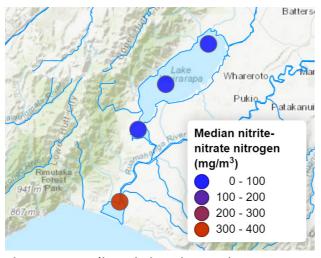



Figure 14: Median nitrite-nitrate nitrogen (mg/m³) results.

Table 20: Nitrite-nitrate nitrogen results, all units are mg/m³ unless otherwise noted.

| Lake      | Site           | No. samples | Min   | Median | Мах   |
|-----------|----------------|-------------|-------|--------|-------|
| Wairarapa | Site 2 - stump | 9           | <1.0  | 1.0    | 570.0 |
| Wairarapa | Middle         | 9           | <1.0  | 2.4    | 490.0 |
| Wairarapa | Alsops Bay     | 8           | 1.0   | 2.6    | 570.0 |
| Ōnoke     | Site 1         | 11          | 124.0 | 360.0  | 650.0 |

Supplementary data results Page 26 of 38

#### **Phosphorus**

#### **Total phosphorus**

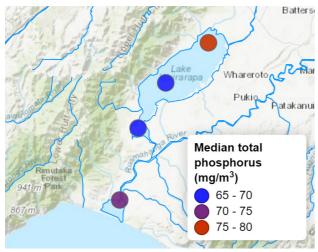



Figure 15: Median total phosphorus (mg/m<sup>3</sup>) results.

Table 21: Total phosphorus results, all units are mg/m³ unless otherwise noted.

| Lake      | Site           | No. samples | Min | Median | Мах |
|-----------|----------------|-------------|-----|--------|-----|
| Wairarapa | Site 2 - stump | 9           | 37  | 78     | 330 |
| Wairarapa | Middle         | 9           | 29  | 65     | 169 |
| Wairarapa | Alsops Bay     | 8           | 38  | 65     | 172 |
| Ōnoke     | Site 1         | 11          | 22  | 71     | 146 |

# **Dissolved reactive phosphorus**

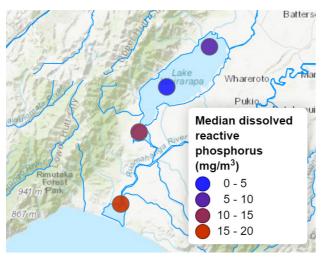



Figure 16: Median dissolved reactive phosphorus (mg/m³) results.

Table 22: Dissolved reactive phosphorus results, all units are mg/m³ unless otherwise noted.

| Lake      | Site           | No. samples | Min | Median | Мах  |
|-----------|----------------|-------------|-----|--------|------|
| Wairarapa | Site 2 - stump | 9           | 3.0 | 9.0    | 33.0 |
| Wairarapa | Middle         | 9           | 1.2 | 2.1    | 27.0 |
| Wairarapa | Alsops Bay     | 8           | 2.0 | 14.1   | 28.0 |
| Ōnoke     | Site 1         | 11          | 1.2 | 15.1   | 30.0 |

Supplementary data results Page 27 of 38

# **Phytoplankton**

# Chlorophyll a

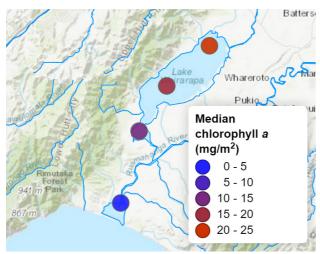



Figure 17: Median chlorophyll  $a \text{ (mg/m}^3\text{)}$  results.

Table 23: Chlorophyll a results, all units are mg/m<sup>2</sup> unless otherwise noted.

| Lake      | Site           | No. samples | Min  | Median | Max  |
|-----------|----------------|-------------|------|--------|------|
| Wairarapa | Site 2 - stump | 9           | 3.0  | 22.0   | 58.0 |
| Wairarapa | Middle         | 9           | <3.0 | 17.0   | 43.0 |
| Wairarapa | Alsops Bay     | 7           | 3.0  | 11.0   | 56.0 |
| Ōnoke     | Site 1         | 11          | <3.0 | 4.0    | 35.0 |

Supplementary data results Page 28 of 38

# **Water clarity**

# **Secchi depth**

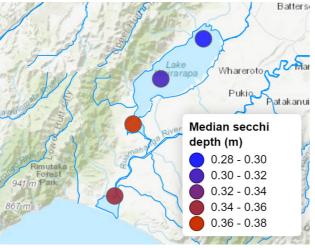



Figure 18: Median secchi depth (m) results.

Table 24: Secchi depth results, all units are m unless otherwise noted.

| Lake      | Site           | No. samples | Min  | Median | Мах  |
|-----------|----------------|-------------|------|--------|------|
| Wairarapa | Site 2 - stump | 9           | 0.15 | 0.29   | 0.60 |
| Wairarapa | Middle         | 9           | 0.18 | 0.31   | 0.63 |
| Wairarapa | Alsops Bay     | 8           | 0.20 | 0.37   | 0.50 |
| Ōnoke     | Site 1         | 11          | 0.19 | 0.35   | 1.00 |

Supplementary data results Page 29 of 38

#### **Sediment**

#### **Turbidity**

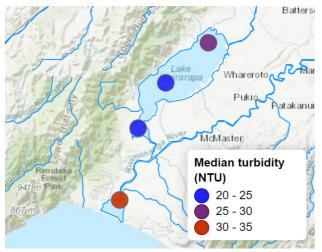



Figure 19: Median turbidity (NTU) results.

Table 25: Turbidity results, all units are NTU unless otherwise noted.

| Lake      | Site           | No. samples | Min  | Median | Max   |
|-----------|----------------|-------------|------|--------|-------|
| Wairarapa | Site 2 - stump | 9           | 10.4 | 27.0   | 136.0 |
| Wairarapa | Middle         | 9           | 6.9  | 24.0   | 122.0 |
| Wairarapa | Alsops Bay     | 8           | 13.9 | 23.0   | 124.0 |
| Ōnoke     | Site 1         | 11          | 1.6  | 35.0   | 138.0 |

#### **Total suspended solids**

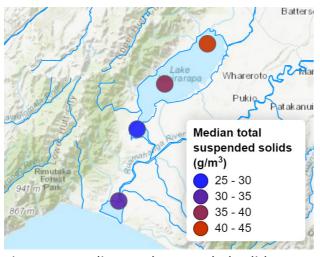



Figure 20: Median total suspended solids  $(g/m^3)$  results.

Table 26: Total suspended solids results, all units are g/m³ unless otherwise noted.

| Lake      | Site           | No. samples | Min  | Median | Max   |
|-----------|----------------|-------------|------|--------|-------|
| Wairarapa | Site 2 - stump | 9           | 17.0 | 41.0   | 163.0 |
| Wairarapa | Middle         | 9           | 13.0 | 37.0   | 132.0 |
| Wairarapa | Alsops Bay     | 8           | 17.0 | 28.0   | 120.0 |
| Ōnoke     | Site 1         | 11          | 5.0  | 32.0   | 160.0 |

Supplementary data results Page 30 of 38

# **Volatile suspended solids**

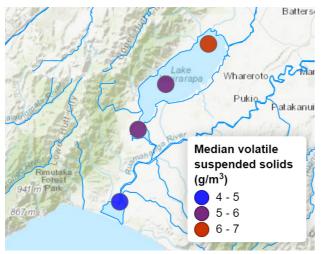



Figure 21: Median volatile suspended solids (g/m³) results.

Table 27: Volatile suspended solids results, all units are g/m³ unless otherwise noted.

| Lake      | Site           | No. samples | Min  | Median | Мах  |
|-----------|----------------|-------------|------|--------|------|
| Wairarapa | Site 2 - stump | 9           | 2.0  | 7.0    | 21.0 |
| Wairarapa | Middle         | 9           | <2.0 | 5.0    | 26.0 |
| Wairarapa | Alsops Bay     | 8           | <2.0 | 5.0    | 44.0 |
| Ōnoke     | Site 1         | 11          | <2.0 | 4.0    | 11.0 |

Supplementary data results Page 31 of 38

# Other water quality variables

#### **Water temperature**

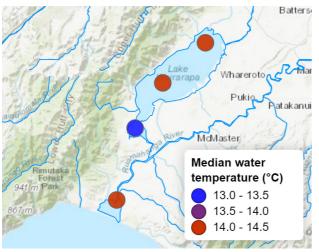



Figure 22: Median water temperature (°C) results.

Table 28: Water temperature results, all units are °C unless otherwise noted.

| Lake      | Site           | No. samples | Min | Median | Мах  |
|-----------|----------------|-------------|-----|--------|------|
| Wairarapa | Site 2 - stump | 9           | 9.3 | 14.0   | 20.1 |
| Wairarapa | Middle         | 9           | 9.1 | 14.1   | 20.7 |
| Wairarapa | Alsops Bay     | 8           | 9.3 | 13.1   | 19.4 |
| Ōnoke     | Site 1         | 11          | 8.6 | 14.2   | 21.4 |

#### pН

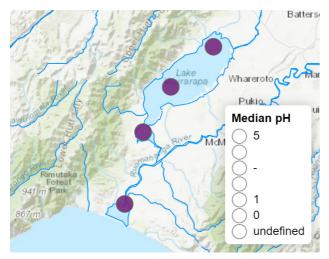



Figure 23: Median pH results.

Table 29: pH results, all units are pH units unless otherwise noted.

| Lake      | Site           | No. samples | Min | Median | Max |
|-----------|----------------|-------------|-----|--------|-----|
| Wairarapa | Site 2 - stump | 9           | 7.3 | 7.6    | 8.7 |
| Wairarapa | Middle         | 9           | 7.2 | 7.6    | 8.4 |
| Wairarapa | Alsops Bay     | 8           | 7.2 | 7.6    | 8.1 |
| Ōnoke     | Site 1         | 11          | 7.2 | 7.6    | 8.6 |

Supplementary data results Page 32 of 38

# Dissolved oxygen mg/L

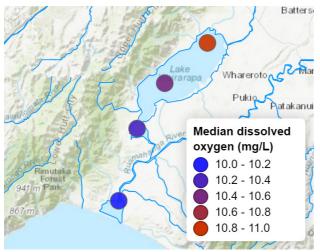



Figure 24: Median dissolved oxygen (mg/L) results.

Table 30: Dissolved oxygen results, all units are mg/L unless otherwise noted.

| Lake      | Site           | No. samples | Min  | Median | Мах   |
|-----------|----------------|-------------|------|--------|-------|
| Wairarapa | Site 2 - stump | 9           | 8.66 | 10.86  | 12.55 |
| Wairarapa | Middle         | 9           | 8.59 | 10.58  | 11.98 |
| Wairarapa | Alsops Bay     | 8           | 8.63 | 10.36  | 11.76 |
| Ōnoke     | Site 1         | 11          | 8.22 | 10.05  | 12.30 |

#### Dissolved oxygen % saturation

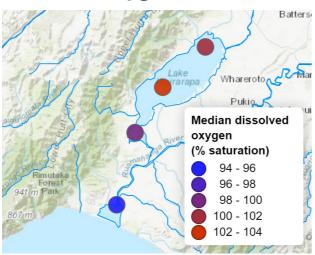



Figure 25: Median dissolved oxygen (% saturation) results.

Table 31: Dissolved oxygen % sat results, all units are % saturation unless otherwise noted.

| Lake      | Site           | No. samples | Min  | Median | Мах   |
|-----------|----------------|-------------|------|--------|-------|
| Wairarapa | Site 2 - stump | 9           | 95.4 | 100.7  | 116.2 |
| Wairarapa | Middle         | 9           | 94.6 | 103.4  | 111.0 |
| Wairarapa | Alsops Bay     | 8           | 93.8 | 99.0   | 109.0 |
| Ōnoke     | Site 1         | 11          | 94.0 | 95.8   | 122.5 |

Supplementary data results Page 33 of 38

# Conductivity

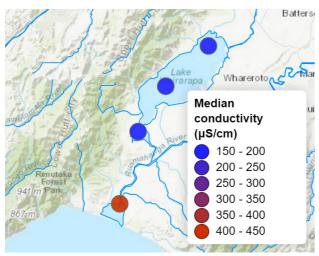



Figure 26: Median conductivity ( $\mu$ S/cm) results.

Table 32: Conductivity results, all units are  $\mu S/cm$  unless otherwise noted.

| Lake      | Site           | No. samples | Min   | Median | Max    |
|-----------|----------------|-------------|-------|--------|--------|
| Wairarapa | Site 2 - stump | 9           | 128.0 | 156.5  | 374.3  |
| Wairarapa | Middle         | 9           | 124.9 | 172.0  | 337.5  |
| Wairarapa | Alsops Bay     | 8           | 125.7 | 160.5  | 342.2  |
| Ōnoke     | Site 1         | 11          | 183.4 | 433.0  | 3744.0 |

Supplementary data results Page 34 of 38

#### Resources

#### **Useful Links**

Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Greater Wellington Natural Resources Plan

National Policy Statement for Freshwater Management 2020

2017/18 Lake water quality and ecology report

Land Air Water Aotearoa (LAWA)

#### References

Burns N, Bryers G and Bowman E. 2000. *Protocols for monitoring trophic levels of New Zealand lakes and reservoirs*. Report prepared for the Ministry for the Environment by Lakes Consulting, Pauanui.

Burns NM, Rutherford JC and Clayton JS. 1999. *A monitoring and classification system for New Zealand lakes and reservoirs.* Journal of Lake and Reservoir Management, 15(4): 255-271.

Clayton T and Edwards T. 2006. LakeSPI – *A method for monitoring ecological condition in New Zealand lakes*. Technical report (version 2). Ministry for the Environment, Wellington.

Cockeram B and Perrie A. 2013. *Lakes State of the Environment monitoring programme: Annual data report, 2012/13.* Greater Wellington, Publication No. GW/ESCI-T-13/115, Wellington.

Cockeram B and Perrie A. 2014. *Lakes State of the Environment monitoring programme: Annual data report, 2013/14.* Greater Wellington, Publication No. GW/ESCI-T-14/119, Wellington.

de Winton M, Taumoepeau A, and David S. 2022. *LakeSPI surveys of waterbodies in Wellington Region:* 2021/22. Report No. 2022179HN prepared for Greater Wellington by NIWA, Hamilton.

Duggan, I.C. 2022. Zooplankton Communities, and TLI and Lake Health Assessments, of Selected Lakes in the Wellington region. ERI Report No. 136, a client report prepared for the Greater Wellington Regional Council. Environmental Research Institute – Te Tumu Whakaora Taiao, Division of Health, Engineering, Computing & Science, The University of Waikato, Hamilton. 12 pp. doi:10.15663/ERI.Report.163

Greater Wellington. 2023. *Natural Resources Plan for the Wellington Region – Te Tikanga Taiao o Te Upoko o Te Ikaa a Maui*. Greater Wellington, Wellington.

Resources Page 35 of 38

Hickson-Rowden B. 2019. *Lake Water Quality and Ecology monitoring programme: Annual data report*, 2017/18. Greater Wellington, Publication No. GW/ESCI-T-18/143

Ministry for the Environment. 2014. *National Policy Statement for Freshwater Management 2014.* Publication No. ME1155, Ministry for the Environment, Wellington.

Perrie A, Heath MW and Cockeram B. 2015. *Lakes State of the Environment monitoring programme: Annual data report, 2014/15.* Greater Wellington Regional Council, Publication No. GW/ESCI-T-15/147, Wellington.

Perrie A and Milne J. 2012. *Lake water quality and ecology in the Wellington region: State and trends.* Greater Wellington, Publication No. GW/EMI-T-12/139, Wellington.

Perrie A and Royal C. 2022. *A preliminary assessment of water quality in selected shallow lakes and lagoons in the Wellington Region.* Greater Wellington Regional Council, Publication No. GW/ESCI-G-22/05, Wellington.

Smith D, McBride G, Bryers G, Davis-Colley R, Quinn J and Vant W. 1989. *A national water quality network for New Zealand*. Department of Scientific and Industrial Research, Hamilton.

Verburg P, Hamill K, Unwin M and Abell J. 2010. *Lake water quality in New Zealand 2010: Status and trends*. Report No. HAM2010-107 prepared for the Ministry for the Environment by NIWA, Hamilton.

Resources Page 36 of 38

# **Appendix**

# **Monitoring details**

Table A1: Water quality sampling methods and detection limits.

| Variable                       | Method                                                                                                                                                          | Detection<br>limit      |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| рН                             | pH meter. APHA 4500-H+ B 22nd ed. 2012                                                                                                                          | 0.1 pH units            |
| Turbidity                      | Analysis using a Hach 2100N, Turbidity meter. APHA 2130 B 22nd Ed. 2012                                                                                         | 0.05 NTU                |
| Total suspended solids         | Filtration using Whatman 934 AH, Advantec GC-50 or 1-2 equivalent filters (nominal pore size 1.2 - 1.5µm), gravimetric determination. APHA 2540 D 22nd Ed. 2012 | 2 g/m <sup>3</sup>      |
| Volatile suspended solids      | Filtration (GF/C, 1.2 μm). Ashing 550°C, 30 min. Gravimetric. APHA 2540 E 22nd Ed. 2012                                                                         | 2 g/m <sup>3</sup>      |
| Nitrate-N                      | Calculation: (Nitrate-N + Nitrite-N) - Nitrite-N                                                                                                                | $0.001\mathrm{g/m^3}$   |
| Nitrite-N                      | Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO 3 - I (modified) 22nd Ed. 2012                                                             | 0.001 g/m <sup>3</sup>  |
| Nitrate-N + Nitrite-N<br>(NNN) | Total oxidised nitrogen. Automated cadmium reduction, Flow injection analyser. APHA 4500-NO 3 - I (modified) 22nd Ed. 2012                                      | 0.001 g/m <sup>3</sup>  |
| Ammoniacal nitrogen            | Phenol/hypochlorite colorimetry. Flow injection analyers. (NH $4$ -N = NH $4$ +-N + NH $3$ -N) APHA 4500-NH $3$ F 22nd Ed. 2012                                 | 0.005 g/m <sup>3</sup>  |
| Total Kjeldahl<br>nitrogen     | Kjeldahl digestion, phenol/hyperclorite colorimetry (Discrete Analysis). APHA 4500-N Org C. (modified) 4500-F (modified) 22nd Ed. 2012                          | 0.1 g/m <sup>3</sup>    |
| Total nitrogen                 | Calculation: TKN + Nitrate-N + Nitrite-N                                                                                                                        | 0.05 g/m <sup>3</sup>   |
| Dissolved reactive phosphorus  | Filtered sample. Molybdenum blue colorimetry. Flow injection analyser. APHA 4500-P G 22nd Ed. 2012                                                              | 0.001 g/m <sup>3</sup>  |
| Total phosphorus               | Total Phosphorus digestion, ascorbic acid colorimetry. Discrete Analyser. APHA 4500-P B & E (modified from manual analysis) 22nd Ed. 2012                       | 0.004 g/m <sup>3</sup>  |
| Chlorophyll a                  | Acetone extraction. Spectroscopy. APHA 10200 H (modified) 22nd Ed. 2012                                                                                         | 0.003 mg/m <sup>2</sup> |
| Pheophytin <i>a</i>            | Acetone extraction. Spectroscopy. APHA 10200 H (modified) 22nd Ed. 2012                                                                                         | 0.003 g/m <sup>3</sup>  |
| Absorbance at 340<br>nm        | Filtered sample. Spectrophotometry, 1cm cell. APHA 5910 B 22nd Ed. 2012                                                                                         | 0.002 AU/cm             |
| Absorbance at 440<br>nm        | Filtered sample. Spectrophotometry, 1cm cell. APHA 5910 B 22nd Ed. 2012                                                                                         | 0.002 AU/cm             |
| Absorbance at 780<br>nm        | Filtered sample. Spectrophotometry, 1cm cell. APHA 5910 B 22nd Ed. 2012                                                                                         | 0.002 AU/cm             |

Appendix Page 37 of 38

Table A2: Water quality monitoring site information.

| Lake      | Site           | Туре       | Lat     | Lng     |
|-----------|----------------|------------|---------|---------|
| Wairarapa | Site 2 - stump | Polymictic | -41.176 | 175.285 |
| Wairarapa | Middle         | Polymictic | -41.227 | 175.214 |
| Wairarapa | Alsops Bay     | Brackish   | -41.282 | 175.168 |
| Ōnoke     | Site 1         | Brackish   | -41.371 | 175.139 |

Table A3: LakeSPI monitoring site information.

| Area        | Waterbody            | Depth (m) | Lat     | Lng     |
|-------------|----------------------|-----------|---------|---------|
| Ōtaki       | Lake Waiorongomai    | 1.5       | -40.712 | 175.143 |
| Ōtaki       | Lake Waitawa         | 6.9       | -40.725 | 175.173 |
| Waikanae    | Lake Ngarara         | 2.5       | -40.877 | 175.005 |
| Wairarapa   | Turner's Lagoon      | 0.4       | -41.151 | 175.287 |
| Wairarapa   | Barton's Lagoon      | 1.0       | -41.168 | 175.314 |
| Wairarapa   | Boggy Pond           | 1.1       | -41.251 | 175.267 |
| Wairarapa   | Matthew's Lagoon     | 1.3       | -41.260 | 175.269 |
| Wairarapa   | Lake Nganoke         | 1.6       | -41.356 | 175.186 |
| Wairarapa   | Lake Pounui          | 9.8       | -41.344 | 175.114 |
| Wainuiomata | Lake Kohangatera     | 2.3       | -41.368 | 174.867 |
| Wainuiomata | Lake Kohangapiripiri | 1.5       | -41.361 | 174.857 |

Appendix Page 38 of 38