The water allocation framework

Multiple bands/block

Greater WELLINGTON REGIONAL COUNCIL Te Pane Matua Taiao

How and where to set the limits?

Greater WELLINGTON REGIONAL COUNCIL TE Pane Matua Taiao

Minimum flows

greater WELLINGTON REGIONAL COUNCIL Te Pane Matua Taiao

Allocation limit

greater WELLINGTON REGIONAL COUNCIL Te Pane Matua Taiao

Reliability of supply

greater WELLINGTON REGIONAL COUNCIL Te Pane Matua Taiao

Lower Ruamahanga River

- Minimum flow 8.5 m3/s at Waihenga
- Instream values and IFIM studies in 2007
- Adult brown trout identified as primary flow value
- 90% habitat retention level selected. DO and water temp considered as well as boating and fish passage

Mangatarere River

- Minimum flow 0.24 (upper) and 0.20 m3/s (lower)
- IFIM & WAIORA late 1990s. CAP 2003
- Trout habitat & spawning an important feature
- Dilution of CDC discharge also considered

Base photo courtesy of Geographx

Papawai Stream

- Minimum flow 0.160 m3/s
- Issues and flow assessment in 2008
- Objectives: longfin eels, DO levels, swimming

Lower Ruamahanga

- Existing <u>average</u> reliability = 93%
- Min Flow ↑ 50%, Reliability ↓ 10%

Greater WELLINGTON REGIONAL COUNCIL TE Pane Matua Taiao

How do outcomes change with different combinations of limits?

Testing limit scenarios

Objective 1a. Loss of long fin eel habitat is <15% of that available at MALF

Testing limit scenarios

Objective 1b. Loss of torrent fish habitat is <15% of that available at MALF

Testing limit scenarios Objective 2. Reliability of <u>full</u> supply of >90%

Testing limit scenarios Objective 3. Reliability of partial supply of >95%

Testing limit scenarios

Allocation efficiency (the framework – dividing up the pie)

How is water allocated when it becomes available on common expiry dates for resource consents

Current water availability at full allocation

No water available to new users when resource consents expire because:

- existing users can retain their water
- the sinking lid

Potential policy direction

The maximum amount of water available for allocation (core allocation) shall not exceed whichever is the greater of:

- The total amount allocated by resource consents
- The limit identified in the Plan

When considering an application [for renewal of resource consent] ... a consent authority must have regard to the value of the investment of the existing consent holder (RMA s104 (2A))

Greater WELLINGTON REGIONAL COUNCIL Te Pane Matua Taiao

Key considerations

How will the Committee address allocation on expiry of resource consents?

- Potential allocation approaches:
 - status quo
 - market e.g. auction, tender
 - administrative e.g. priority allocation system, user groups, ballot, transfer
- Equity vs existing investment?

