

Ruamahanga Economic Catchment Model

Suzie Greenhalgh & Adam Daigneault

21st November 2016

LANDCARE RESEARCH MANAAKI WHENUA

The aim of tonight...

- Remind you of:
 - What NZFARM can report against
 - What NZFARM modelling can be used for
- Clarify level of specificity needed to model the policy packages
- Get feedback on what is best way to report results back to RWC

Reminder: what it is?

- A catchment-level economic model of NZ land use
 - Objective is to maximize income from land-based activities
 - Spatial scale at sub-catchment level
 - Models changes in land use and land management
 - Key outputs include changes in farm income, land use/mgmt
 - Can assess trade-off of multiple contaminants and policy approaches
- Designed to consistently compare the <u>relative</u> economic & environmental impacts of a range of policy scenarios

Key Model Outputs

Net Revenue (from on-farm production)

Food (meat, milk, fruit, etc.)

Raw materials (timber, pulp, wool, silage, etc.)

Freshwater (N, P, E.coli, irrigated area)

Erosion and Prevention (soil loss/retain by land use)

Carbon Sequestration (exotic and native forest, grassland, etc.)

Outputs will vary subject to:

- Contaminant load target(s)
- Policy mechanism
- Mitigation cost & effectiveness

How can NZFARM be used to help you.....

- Economic impacts of Scenarios
 - BAU, gold, silver, bronze
 - Based on RWC determining what would happen (akin to 'painting' the new landscape)
- Compare policy packages
 - Based on policy levers/approaches/packages RWC would like to use to achieve the preferred scenario

Attribute	Can we report
Farm income (EBIT)	Yes
EBIT/m3 water used	Yes
Number of days of irrigation restriction	# days comes from other modelling; can estimate the output difference between with and without restrictions
Water storage	Yes, similar to above; can estimate the output difference between with and without extra water
Environmental impacts of policy options	Yes – N, P, sediment, <i>E.coli</i> & GHG
Cash farm surplus	No, input data only contains EBIT (not debt information)
Farm return on capital	No, input data only contains EBIT (no debt information)
Number of jobs	No, not directly. Could estimate using other info sources
Farm expenditure	No, coming from other modelling

Policy package details

- For each management option need to know how RWC want so achieve that (i.e., what policy levers want to compare)
- Remember....we can't model everything
- e.g. retiring land on steep slopes
 - Require specific types of land (e.g. land with slope > 25°)or specific areas of land are retired
 - Payments to incentivise land retirement
 - Rates rebate on retired land that meet certain requirements (need to know rebate details)
 - Direct payments to compensate lost revenue (need to know if partial or full compensation)

Policy package details

- e.g. riparian planting
 - Require specific riparian areas to be replanted (need to know what areas are planted)
 - Payments to incentivise riparian planting
 - Rates rebate for riparian areas that are replanted (need to know rebate details)
 - Direct payments to compensate lost revenue (need to know what compensating)
 - Contributions to riparian planting cost (need to know contribution amt/portion)
 - Technical support (can't be directly modelled)
- e.g. on-farm mitigation
 - Require specific mitigation bundles to be implemented (need to know who is to do what)
 - Payments to incentivise on-farm mitigation options
 - Direct payments to cover costs (need to know what costs are being covered)
 - Cost-share (need to know level of cost-share for each tier)
 - Technical support (can't be directly modelled)

Different ways to present information

For the policy packages:

- impact on farm income, environmental indicators
 - Tables and/or maps
- Impact on farm income by land use
 - Bar chart
- Change in land use
 - Bar chart
- Uptake of mitigation practices
 - Bar chart
- Annual costs by mitigation practices
 - Bar chart

Policy packages: Catchment level impacts

Tables

Example Policy Package	Total Annual Cost (\$/yr)	Net Revenue (\$)	N Leach (t)	P Loss (t)	Sediment (kt)	E.coli (peta)
Baseline	\$0	\$200,679,150	5,285	209	814	134.7
% Change from no mitigation baseline						
All Farms M1	\$583,436	0%	0%	0%	0%	-4%
All Farms M2	\$18,270,930	-9%	-10%	-7%	-9%	-4%
All Farms M3	\$27,926,712	-14%	-10%	-48%	-25%	-4%
Convert All to Forest	\$108,954,857	-54%	-82%	-82%	-41%	-84%
10% catchment	\$12,193,487	-6%	-10%	-15%	-10%	-3.7%
10% FMU	\$15,713,580	-8%	-10%	-28%	-10%	-3.0%

Maps of each policy package

Policy packages: Income impacts by land use

Policy packages: Land use change

Policy packages: Uptake of mitigation bundles

Policy packages: Annual costs by land use

Bar chart

Contact Details

Suzie

greenhalghs@landcareresearch.co.nz 09-574 4132

Adam:

Adam.daigneault@maine.edu

Key Ruamāhanga catchment economic model baseline estimates

Aggregated Land Use	Area (ha)	Net Farm Revenue (\$)	N leaching (t)	P loss (t)	Sediment (kt)	E.coli (peta)
Dairy	35,739	66,499,471	1,045	33	10	28
Dairy Support	14,880	13,066,002	965	16	16	9
Sheep & Beef	154,276	72,496,361	2,045	136	378	74
Other Pasture	2,750	2,354,785	52	1	5	1
Forestry	11,306	5,174,823	34	2	23	3
Mixed (Arable)	16,742	27,623,821	653	7	7	4
Horticulture	2,352	13,202,910	20	0	0	1
Native Bush	85,843	0	86	9	365	4
Lifestyle	12,207	0	330	5	4	7
Other	22,898	0	56	0	4	3
Ruamahanga Total	358,993	\$200,417,788	5285	209	813	135

NZFARM test scenarios for the Ruamāhanga catchment

Scenario Name	Description	N Leach Target	P Loss Target	Sedimen t Target	E. coli Target	
Management Actions						
All Farms M1	All dairy, sheep & beef, and dairy support farms implement M1 mitigation bundle	n/a	n/a	n/a	n/a	
All Farms M2	All dairy, sheep & beef, and dairy support farms implement M2 mitigation bundle	n/a	n/a	n/a	n/a	
All Farms M3	All dairy, sheep & beef, and dairy support farms implement M3 mitigation bundle	n/a	n/a	n/a	n/a	
Minimum Feasible Loads						
Convert All to Forest	Afforestation of all non-native land in the catchment to estimate the minimum loads possible	n/a	n/a	n/a	n/a	
Contaminant load reduction targets						
10% catchment	10% reduction in N, P, and sediment for entire Ruamahanga catchment	10%	10%	10%	0%	
10% FMU	10% reduction in N, P, and sediment for each FMU in the Ruamahanga catchment	10%	10%	10%	0%	

