Limits Framework

Natural Resource Management

- Define resource and its boundaries
- Identify values and make value judgements
- Define desired environmental outcome
- Limit capacity for use
- Allocate to users
- Monitor and review

National Policy Statement

- Set freshwater objectives and limit
- National level objective- safeguard life supporting capacity, ecosystems and indigenous species
- Maintain and improve overall water quality
- Protect outstanding waterbodies including wetlands
- Avoid over-allocation
- Achieve efficient allocation and use of water
- Improve integrated catchment management

e Pane Matua Taiao

Ruamāhanga

NPS-FM Tangata whenua roles and interests

- Involve iwi and hapu in the management of freshwater
- Work with iwi and hapu to identify tangata whenua values and interests in freshwater
- Reflect tangata whenua values and interests in the management of, and decision making regarding, fresh water and freshwater ecosystems in the region

Regional Policy and Plans

- Give effect to RPS
- High level objectives in regional plan

Key Elements Limit Setting

- Make value judgements and express desired outcome as freshwater state objective
- Express objectives with increasing levels of detail (specificity) at appropriate scales
- Use spatial units- Management areas
- Determine the capacity for use (set limits at a catchment/subcatchment scale) as policies and rules that will achieve state objectives

State Objectives	Numeric	Manage For	Discharge Limit	Take Limit	Additional Management
					Methods
Sediment/	Yes	Contact	Yes, for sediment	Flow	Source
clarity		recreation,	loads	dependant	control, Stock
		ecological			access,
		health, aesthetic			Riparian
		values, fisheries			planting
Algae/	Yes	Contact reaction,	Yes, for N and P	Flow	Nutrient
Macrophytes		aesthetic values,	loads	dependant	management
		ecological			Shading,
		health, fisheries,			Stock access,
		human health			Flushing flows
Bacteria	Yes	Contact	Only for point	No	Stock Access,
		recreation/	source		wastewater
		human health/	3		overflows
		stock drinking			
Temperature	Yes	Ecological	Only for point	Yes	Shading
		health, fisheries	source		
Dissolved	Yes	Ecological	Only for point	Yes	Shading
oxygen		health, fisheries	source		
Toxic	Yes	Ecological	Yes, particularly for	Flow	Source
contaminants		health, fisheries,	point source	dependant	control
		human health,	discharges/		
		water supply	stormwater,		
			also N toxicity		
Habitat space	Yes	Ecological	No	Yes	Yes,
		health, fisheries			particularly
					Riparian and
					stock access
QMCI Score	Yes	Ecological	Yes, for toxic	Not at the	Yes,
		health, fisheries	contaminants	moment	everything
		/ .			
Connectivity	No	Ecological	No (possibly for	Yes	Yes,
		Health,	point source toxic		management
		fisheries	contaminants)		of barriers
Channel	Yes,	Ecological	No	Yes	Yes,
morphology	for Flow	health,			management
and		maintenance of			of bed
processes		channel,			disturbance
		estuary/coastal			activities
		maintenance			
Salt water	Yes	Water quality for	No	Yes	No
intrusion		a range of uses			
(Chloride)					

THE END

For now!

Limits

- Maximum amount of resource use (take or discharge) while meeting a desired measurable state objective within a spatial unit or management area
- Policy and rules which directly control resource use
- Limits are binding to "avoid over-allocation"
- Must cover all water users, or sources of a particular contaminant

Identify contaminants to be managed

- Sediment
- Nutrients (e.g. nitrogen and phosphorous)
- Micro-organisms
- Metals
- Other toxic or harmful contaminants (e.g. PAH, pesticides etc.)

Identify all sources

- Point sources and non-point sources
- Identify "natural" sources
- All discharges need to be managed within the regulatory framework in an integrated way

Inter-relationships

- Account for physical inter-relationships between freshwater resources (surface-ground water), land-soil processes, and the coastal environment.
- State objectives <u>may</u> be the same for setting take and discharge limits
- A freshwater objective and limit <u>may</u> be driven by an objective in the coastal environment
- Need to set limits in an integrated way
- For example- A change in the flow regime will change the discharge limit, and still meet the same numeric state objective

Range of Management mechanisms

- There is no silver bullet
- Range of tools may be different between catchments- one size does not fit all-target solutions to the catchment
- Regulatory- RMA s.9, s.14 and s.15
- Regulatory- LGA and others (e.g. by-laws)
- Non-regulatory
- Allocate where you can

Prerequisites for allocating contaminants to individuals

- Identify all sources of a contaminant
- Identify natural background sources
- Attribute the sources to individuals (or groups of individuals)
- Either directly measure or estimate (i.e. by an appropriate repeatable method such as a model) the quantum of the discharge from individuals
- s.32 test

Allocating contaminants

- Account for the total quantum of all individual sources by way of a catchment contaminant budget that forms the basis of allocation
- Monitor individual sources as well as contaminant concentrations and objectives in the receiving water, so that periodic review and adaptive adjustments can be made

Over-allocated catchments

- Define objectives
- Define existing load
- Set target to meet freshwater state objectives
- <u>Time</u> factor in target the key element
- Set <u>interim limits</u> as way of stopping further overallocation, and pathway to target
- Use a range of methods to work toward target.
 "There is no silver bullet"

Whaitua