

Using Bayesian Networks to make good decisions in complex systems

Richard Storey

Taihoro Nukurangi

River catchments support many different values

River systems are complex

Questions a collaborative stakeholder group may ask

- How would different "minimum river flow" levels affect regional economic growth, native fish abundance and suitability of the river for swimming? How certain are we of these outcomes?
- How do different policy options affect freshwater values?

	Option A: Raise min. flow	Option B Current min. flow	Option C Lower min. flow	
	Nutrient cap	Riparian planting	Stock exclusion	
Native fish OK?	Yes (80%)	Yes (70%)	Yes (50%)	
Suitability for swimming	Good (70%)	Fair (80%)	Fair-Poor (70 %)	
Fulltime jobs in horticulture & farming	Loss of jobs (80%)	No change in no. of jobs (65%)	Gain in jobs (80%)	

The challenges for a CSG

- How to make decisions that achieve a range of objectives and balance different interests?
- How to determine effects of different management options for achieving objectives?
- How can science inform the decision-making process without dominating or bamboozling?

Bayesian Networks for resource planning

- a way of determining the chance that certain management decisions will lead to particular outcomes
- Based on knowledge of:
 - How one variable affects another.
 - The state of some variables (decisions, fixed scenarios, observations)

"if 50% of streams in the Ruamahanga catchment are fenced and planted, then there is an 80% chance that native fish index will increase"

Stage 1: influence diagram

• Represents how we think one thing affects another

Bayesian Networks

- How much one node affects others
- Based on probabilities: represent incomplete knowledge
- Probabilities combined according to Bayes theorem: P(A,B) = P(A|B)*P(B)

Silt covering riverbed

33.3

33.3

33.3

high

med

low

Conditional dependency tables

Strong dependency

		Phosphate concentration	
		<5 ppb	>5 ppb
% of banks fenced	<50%	10	90
	>50%	90	10

Weak dependency

		Algae cover of river bed	
		<30%	>30%
Phosphate concentration	<5 ppb	65	35
	>5 ppb	25	75

CPTs combining 2 parents

Parent node 1 Parent node 2 (2 states) (3 states)

Child node

Algae cover	Silt on river bed	Macroinvertebrate community health		
		High	Med	Low
<30%	High	60	20	20
<30%	Med	80	10	10
<30%	Low	90	10	0
>30%	High	10	30	40
>30%	Med	40	30	30
>30%	Low	50	25	25

Set manually, by equation or by probability function

% of river banks fenced and re-planted No prior knowledge less than 50 50.0 more than 50 50.0 or decision Stream phosphate conc. less than 5ppb 50.0 more than 5ppb 50.0 Algae % cover of riverbed less than 30pc 45.0 **Silt covering riverbed** more than 30pc 55.0 33.3 high 33.3 med Macroinvertebrate community health 33.3 low high 52.8 med 21.6 25.6 low

BNs in resource management

- Multiple influences
- Multiple decisions
- Range of diverse values
- Variety of info sources
- Uncertain behaviour
- Incomplete data
- Used by individuals or groups

How BNs are used in collaborative processes

1. Whaitua committee

- Identifies values > objectives > "performance measures"
- Identifies key issues
- Identifies management options
- draws "influence diagrams"
- 2. Experts refine the diagrams: realistic, relevant, functional
- Set states for each node
- Set probabilities for each linkage

Purpose of Bayesian Network for RWC

Support decision-making on key issues by

- Showing consequences of policies and limits on different values
- Helping to compare different policy "packages":
 - which one gives the best result for the greatest number of values?

How does the BN fit with other modelling?

Group exercise

- Choose an issue
- Together, build an influence diagram.
 - What values may be affected? What attributes can be used to measure the outcomes?
 - What decisions (policies, limits) are available?
 - How are the attributes affected by the decisions?
- If time allows: choose connected 3 nodes
 - Decide on 2-3 "states" for each node
 - Draw a probability table to show how each affects the others