

# Macroinvertebrate outcomes for aquatic ecosystem health in rivers and streams

Technical report to support the draft Natural Resources Plan

S Greenfield Environmental Science Department

For more information, contact the Greater Wellington Regional Council:

Wellington PO Box 11646

T 04 384 5708 F 04 385 6960 www.gw.govt.nz GW/ESCI-T-14/59 ISBN: 978-1-927217-41-2 (online)

June 2014

www.gw.govt.nz info@gw.govt.nz

| Report prepared by:             | S Greenfield    | Senior Environmental<br>Scientist            | E-                     |
|---------------------------------|-----------------|----------------------------------------------|------------------------|
| Report reviewed by:             | J Milne         | Team Leader – Aquatic ecosystems and quality | A                      |
| Report approved for release by: | G Sevicke-Jones | Manager, Environmental<br>Science            | She<br>Date: June 2014 |

#### DISCLAIMER

This report has been prepared by Environmental Science staff of Greater Wellington Regional Council (GWRC) and as such does not constitute Council policy.

In preparing this report, the authors have used the best currently available data and have exercised all reasonable skill and care in presenting and interpreting these data. Nevertheless, GWRC does not accept any liability, whether direct, indirect, or consequential, arising out of the provision of the data and associated information within this report. Furthermore, as GWRC endeavours to continuously improve data quality, amendments to data included in, or used in the preparation of, this report may occur without notice at any time.

GWRC requests that if excerpts or inferences are drawn from this report for further use, due care should be taken to ensure the appropriate context is preserved and is accurately reflected and referenced in subsequent written or verbal communications. Any use of the data and information enclosed in this report, for example, by inclusion in a subsequent report or media release, should be accompanied by an acknowledgement of the source.

The report may be cited as:

Greenfield S. 2014. *Macroinvertebrate outcomes for aquatic ecosystem health in rivers and streams: Technical report to support the draft Natural Resources Plan.* Greater Wellington Regional Council, Publication No. GW/ESCI-T-14/59, Wellington.

## Contents

| Execu                                                                                                                                                                                    | itive summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>1.</b><br>1.1                                                                                                                                                                         | Introduction<br>Report outline                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>1</b><br>1                                                                                                                                              |
| 2.                                                                                                                                                                                       | River classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                          |
| <b>3.</b><br>3.1                                                                                                                                                                         | Macroinvertebrate attribute selection<br>Relationship between macroinvertebrate community composition                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                          |
| 3.2                                                                                                                                                                                      | and environmental stressors<br>Correlation between macroinvertebrate community metrics and<br>stressor gradient                                                                                                                                                                                                                                                                                                                                                                                              | 5<br>7                                                                                                                                                     |
| 3.3                                                                                                                                                                                      | stressor gradient<br>Metric selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                          |
| <ol> <li>4.1</li> <li>4.1.1</li> <li>4.1.2</li> <li>4.1.3</li> <li>4.2</li> <li>4.3</li> <li>4.4</li> <li>4.5</li> <li>4.6</li> <li>4.7</li> <li>4.8</li> <li>4.9</li> <li>5.</li> </ol> | Identification of numeric outcomes for MCI<br>Methods<br>Identification of MCI range for each FENZ class<br>Identification of MCI thresholds<br>Identification of confidence around thresholds<br>Macroinvertebrate health across FENZ classes<br>Thresholds for FENZ types C7, C10 and UR<br>Thresholds for FENZ type C6a<br>Thresholds for FENZ classes C5, C1 and C6b<br>Thresholds for FENZ class C8<br>Thresholds for FENZ class C6c<br>Thresholds for FENZ classes A and B<br>Numeric outcomes for MCI | <ul> <li>10</li> <li>12</li> <li>12</li> <li>13</li> <li>14</li> <li>15</li> <li>16</li> <li>17</li> <li>18</li> <li>19</li> <li>20</li> <li>21</li> </ul> |
| <b>6.</b><br>6.1<br>6.2<br>6.3<br>6.4<br>6.5                                                                                                                                             | Supporting factors for macroinvertebrate health<br>Instream temperature and dissolved oxygen<br>Nutrient concentration and periphyton biomass<br>Toxicants<br>Habitat quality<br>Water quantity and flow                                                                                                                                                                                                                                                                                                     | <b>22</b><br>22<br>22<br>22<br>23<br>23                                                                                                                    |
| <b>7.</b><br>7.1                                                                                                                                                                         | Summary and recommendations<br>Recommendations for future work                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>24</b><br>24                                                                                                                                            |
| Refer                                                                                                                                                                                    | ences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26                                                                                                                                                         |
| Ackno                                                                                                                                                                                    | owledgments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29                                                                                                                                                         |
| Appendix 1: Macroinvertebrate sampling sites                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                         |

## **Executive summary**

This report presents technical background to macroinvertebrate indicators of river and stream ecosystem health recommended for inclusion in the draft Natural Resources Plan (dNRP) for the Wellington region. It was originally drafted prior to the release of the Regional Plan Working Document for Discussion (WDFD) in September 2013 (GWRC 2013) but was not completed due in part to uncertainty about changes that might be made in response to the release of the National Objectives Framework (NOF) under the National Policy Statement for Freshwater Management (NPS-FM). Although the outcomes recommended in this report differ from the final recommendations for the dNRP documented in Greenfield (2014a) this report presents relevant background analysis and a record of the evolution of outcomes for the dNRP.

The relationship between macroinvertebrate data collected from Rivers State of the Environment (RSoE) monitoring sites between 2004 and 2009 and environmental data such as water quality variables and land use was analysed to assess the suitability macroinvertebrate community health indicators for use in the dNRP (where they are referred to as 'attributes'). A number of macroinvertebrate metrics were highly correlated with environmental factors across the RSoE site network. While the recommended approach is to assess macroinvertebrate community health using a range of metrics from the four main types (composition/abundance, richness/diversity, sensitivity/tolerance and functional) there is currently a lack of data, particularly reference data, to enable this approach to be used. In the interim, the Macroinvertebrate Community Index (MCI) has been chosen as the sole attribute to represent macroinvertebrate community health. MCI is highly correlated with environmental factors across the RSoE site network.

Predicted reference MCI scores from a national model (Clapcott et al. 2011) along with measured MCI scores from RSoE sites and sites sampled for a range of studies in the Wellington region between 1999 and 2010 were used to identify numeric thresholds to represent the desired levels of ecosystem health (referred to as 'outcomes'). Outcomes representing two levels of ecosystem health were identified – a default 'healthy' level which applies to all rivers and streams in the region and a higher level which applies to rivers and streams identified as supporting 'significant indigenous ecosystems' in Table 16 of the Regional Policy Statement (GWRC 2013). Identification of numeric outcomes was based around the Freshwater Environments of New Zealand (FENZ) classification to account for natural variability in river and stream ecosystems across the region.

| FENZ class          | Significant aquatic ecosystem outcome<br>(Chl. <i>a</i> mg/m²) | Healthy aquatic ecosystem outcome<br>(Chl. <i>a</i> mg/m²) |
|---------------------|----------------------------------------------------------------|------------------------------------------------------------|
| C7, C6a, C10 and UR | 130                                                            | 115                                                        |
| C5, C8, C6b and C1  | 130                                                            | 105                                                        |
| C6c                 | 120                                                            | 100                                                        |
| A,B                 | 125                                                            | 105                                                        |

Recommended MCI outcomes for 'significant aquatic ecosystem' and 'healthy aquatic ecosystem' levels of protection for FENZ classes in the Wellington region

In addition, a standard of no more than 20% change in Quantitative Macroinvertebrate Index (QMCI) score is recommended to apply to specific consented activities such as point source discharges or water abstractions.

## 1. Introduction

Objective 13 of the Regional Policy Statement (RPS) for the Wellington region (GWRC 2013) states that the region's rivers must support healthy functioning ecosystems as a bottom line. Policy 17 of the RPS states that the Regional Plan should include policies and rules that protect the significant indigenous ecosystems<sup>1</sup> associated with rivers listed in Appendix 1 of the RPS. In order to implement the RPS the regional plans for the Wellington region are currently under review and a draft Natural Resources Plan (dNRP) will be released later in 2014. The dNRP will include numeric objectives or 'outcomes' for a range of river and stream health indicators (referred to as 'attributes' in the planning sense). As a default, numeric outcomes will be set at a level that will support 'healthy functioning ecosystems'. Outcomes representing a higher level of protection to support 'significant indigenous ecosystems' will also be identified for those rivers and streams identified in Table 16 of the RPS. Numeric outcomes must take into account natural variation in rivers and streams in the region.

This report was originally drafted prior to the release of the Regional Plan Working Document for Discussion (WDFD) in September 2013 but was not completed due in part to uncertainty about changes that might be made in response to the release of the National Objectives Framework (NOF) under the National Policy Statement for Freshwater Management (NPS-FM). Although the outcomes recommended in this report differ from the final recommendations for the dNRP documented in Greenfield (2014a), this report presents relevant background analysis and a record of the evolution of outcomes for the dNRP.

Ecological indicators used to represent the ecological health of rivers and streams in the Wellington region include:

- Instream macrophytes and periphyton
- Macroinvertebrates
- Native fish

This report identifies attributes and, where sufficient data are available, numeric outcomes for macroinvertebrate community health. Selection of attributes and outcomes is based on assessment of the relationship between macroinvertebrate community health metrics and environmental factors in the Wellington region. Key supporting environmental variables that will need to be managed in order to achieve macroinvertebrate outcomes are also briefly discussed.

#### 1.1 Report outline

The river classification used as the basis for river and stream ecosystem health outcomes is outlined in Section 2. Section 3 provides information on the relationship between macroinvertebrate metrics and environmental variables in

<sup>&</sup>lt;sup>1</sup> Significant river ecosystems were identified as having high value for general aquatic ecosystems (based on the proportion on indigenous forest or scrub in the upstream catchment or for native fish (based on the number of species recorded in the NZ Freshwater Fish Database, the presence of nationally threatened species and/or the presence of inanga spawning habitat) (Warr et al. 2009).

the Wellington region while proposed numeric outcomes for macroinvertebrate community health are presented in Sections 4 and 5. Section 6 outlines the supporting environmental factors that will need to be managed in order to achieve the recommended outcomes.

## 2. River classification

As stated by Barbour et al. (1999) the identification of a classification framework to partition natural ecosystem variability is a key first step in the development of biological indicators for ecological assessment. The Freshwater Environments of New Zealand (FENZ) classification has been selected as the classification that best represents natural variability in river and stream ecosystems in the Wellington region (Warr 2009) and has been modified to better suit the region (Warr 2010). Amendments involved amalgamating various 100-level classes to reduce the number of classes to allow their use in a resource management context and spitting of class C6 into three classes to better represent differences within this river type. The amended FENZ classification partitions rivers and streams in the Wellington region into 11 classes (Table 2.1, Figure 2.1) and is used as the basis for selection of macroinvertebrate community indicators and numeric outcomes.

Table 2.1: Extent and description of each class in the amended FENZ classification for the Wellington region

| GW<br>FENZ<br>class | Stream<br>length<br>(km) | Description                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                   | 3,299                    | A combination of 100-level classes A4 and A2. These are small streams occurring in inland or coastal locations with very low frequency of days with significant rainfall. Gradients of these streams are very gentle to gentle and substrates are predominantly silty or sandy. Predominant location: Central Wairarapa Valley and Kapiti Coast.                                                                                     |
| C5                  | 3,076                    | Small streams occurring in moderately coastal locations with mild, maritime climates and low frequency of days with significant rainfall. Stream gradients are generally moderate and substrates are predominantly coarse gravels. Predominant location: Wellington south coast, eastern Wairarapa coast and western Tararua foothills.                                                                                              |
| C8                  | 1,869                    | Small inland streams with mild climates and low frequency of days with significant rainfall. Stream gradients are moderate and substrates are generally coarse gravels. Predominant location: Eastern Wairarapa hill country and northern foothills of Tararua Range.                                                                                                                                                                |
| C7                  | 1,729                    | Small to medium-sized streams occurring in inland locations with mild climates and low frequency<br>of days with significant rainfall. Stream gradients are generally steep and substrates are generally<br>coarse gravels. Predominant location: Lowland hills of the Tararua, Rimutaka and Aorangi ranges.                                                                                                                         |
| C10                 | 924                      | Small streams occurring in inland locations with cool climates and moderate frequency of days with significant rainfall. Gradients of these streams are generally very steep and substrates are generally cobbly. Predominant locations: Small, mid-elevation streams in the Tararua, Rimutaka and Aorangi ranges                                                                                                                    |
| C6a                 | 426                      | This class is a variant of 100-level class C6 and includes C6 rivers that have an upstream catchment dominated by C7 rivers. These are larger rivers occurring in moderately inland locations with warm climates and low frequency of days with significant rainfall and a predominance of coarse gravelly substrates. Stream gradients are gentle. Predominant location: Lower reaches of larger rivers draining the Tararua Range. |
| UR                  | 356                      | A combination of 23 100-level classes that occur entirely within the upper Tararua or Rimutaka ranges.                                                                                                                                                                                                                                                                                                                               |
| C1                  | 279                      | Small coastal streams with mild maritime climates and low frequency of days with significant rainfall. Stream gradients are generally very steep and substrates are predominantly coarse gravels. Predominant location: South Wairarapa coast, Rimutaka Range and Kapiti Island.                                                                                                                                                     |
| C6c                 | 198                      | A variant of 100-level class C6 and includes C6 rivers that have an upstream catchment dominated<br>by class A and/or C8 rivers and streams. Predominant location: Larger rivers draining eastern<br>Wairarapa hill country and lowland areas of the Kapiti Coast.                                                                                                                                                                   |
| C6b                 | 17                       | A variant of 100-level class C6 and includes C6 rivers that have an upstream catchment dominated<br>by class C5 streams. Location: Horokiri and Pauatahanui streams as well as some stream<br>segments on the eastern Wairarapa coast.                                                                                                                                                                                               |
| В                   | 3                        | A combination of 100-level classes B1 and B3 of very limited extent in the Wellington region but has been retained due to the peat-dominated nature of the catchments which is likely to result in unique ecological characteristics. Location: Mangaroa Valley, Lake Wairarapa, Paraparaumu.                                                                                                                                        |

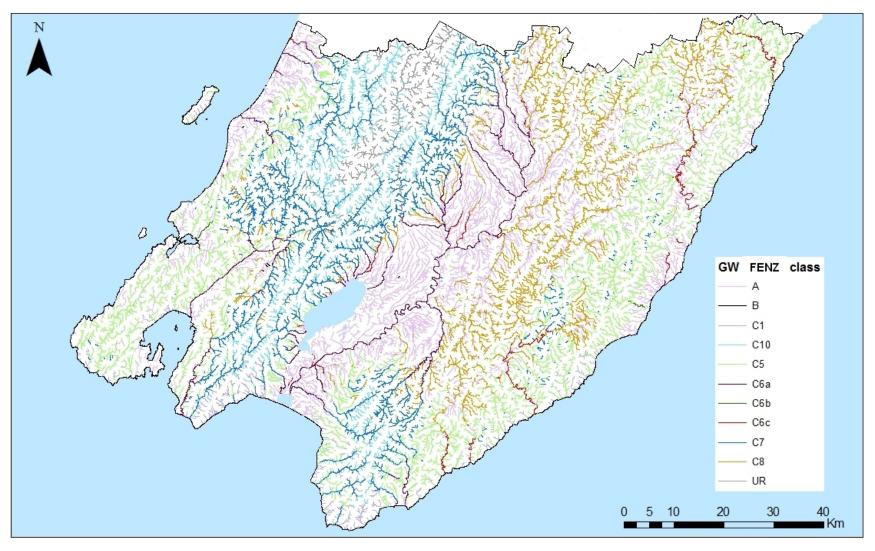



Figure 2.1: Map of the amended FENZ classification for the Wellington region (adapted from Warr 2010)

### 3. Macroinvertebrate attribute selection

Assessment of the health of macroinvertebrate communities should incorporate as many different aspects of the community as possible such as taxa richness, diversity, proportion of sensitive and tolerant taxa, and trophic structure (Hering et al. 2006, Barbour et al. 1999). A similar range of macroinvertebrate metric types are suggested by Schallenberg et al. (2011) as suitable for measuring 'ecological integrity' of rivers and streams in New Zealand. Hering et al. (2006) set out the process for selection of macroinvertebrate metrics as follows:

- Identification of a river classification system that accounts for natural variation in river/stream communities.
- Metric selection candidate metrics should include at least one from each of the four main types; composition/abundance, richness/diversity, sensitivity/tolerance and functional metrics.
- Correlation of each metric with a stressor gradient within each stream type the relationship between candidate metrics and environmental stressors should be assessed across sites within a range of conditions from reference to heavily impacted.
- Selection of core metrics by assessing those that have the strongest relationship with the stressor gradient but excluding those that are highly correlated.

Macroinvertebrate and environmental data from GWRC's 56 Rivers State of the Environment (RSoE) monitoring sites (Figure 3.1) are used to assess the relationship between macroinvertebrate metrics and the environmental gradient across all stream types. Although there are macroinvertebrate data available from a number of other sites in the region many of these do not have accompanying water quality and other environmental data.

## 3.1 Relationship between macroinvertebrate community composition and environmental stressors

Clapcott and Olsen (2010) used a BIOENV routine to explore which environmental variables best explained patterns in the macroinvertebrate communities in RSoE samples. BIOENV is a permutation-based analysis that explores how all possible combinations of variables correlate with macroinvertebrate community data.

The five-variable solution with the highest correlation to invertebrate data (r=0.772) included conductivity, total nitrogen, turbidity, minimum dissolved oxygen saturation, and percentage of streambed silt cover. Percentage of silt cover was the single variable with the highest correlation with invertebrate community composition (r=0.653), reflecting the difference in macroinvertebrate community composition between soft and hard bottomed streams (Clapcott & Olsen 2010).

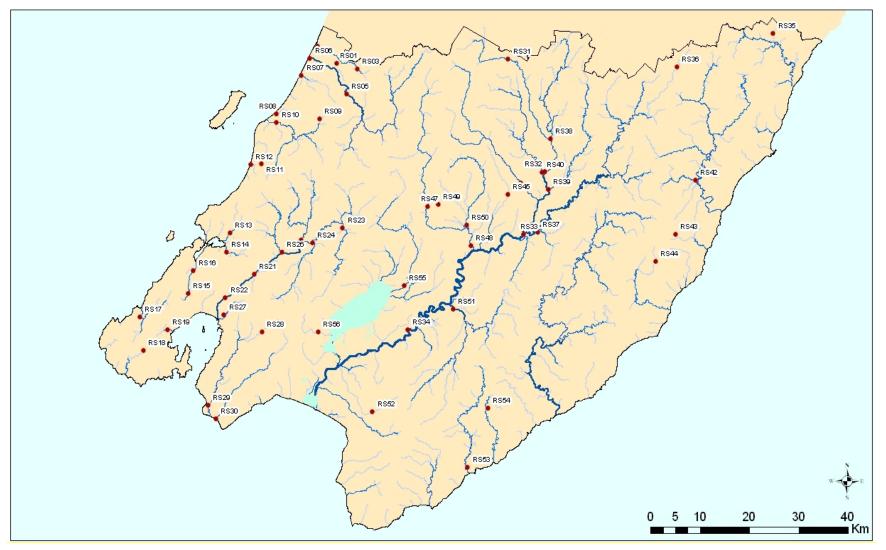



Figure 3.1: Location of GWRC's 56 River State of the Environment (RSoE) monitoring sites

Although these correlations do not represent a direct cause and effect, they suggest that silt cover, nutrient concentrations (in particular nitrogen), turbidity and dissolved oxygen content of the water, either directly or indirectly, affect macroinvertebrate community composition.

## 3.2 Correlation between macroinvertebrate community metrics and stressor gradient

Principal Components Analysis (PCA) was undertaken on environmental data (landuse data from the River Environment Classification database and annual summary statistics for 14 water quality variables for the period 2004–2009) for each RSoE site (Clapcott & Olsen 2010). The first principal component of this analysis (axis 1) explained 36% of the variation in environmental data while the second accounted for 11%. Low scores on axis 1 of the PCA were associated with sites with high water clarity, high dissolved oxygen concentration and high percentage of indigenous forest cover in the catchment above the site (Table 3.1). High scores on axis 1 of the PCA were associated with sites with a high proportion of high producing pasture<sup>2</sup> in the upstream catchment as well as high turbidity and high concentrations of ammoniacal nitrogen, total organic carbon and total phosphorus (Table 3.1).

## Table 3.1: Eigenvectors from PCA analysis of environmental variables from RSoE monitoring sites

(Source: Clapcott & Olsen 2010, Table 8)

| Variable                    | PC1    | PC2    |
|-----------------------------|--------|--------|
| Black disc (visual clarity) | -0.28  | 0.218  |
| DO ppm                      | -0.28  | -0.027 |
| DO satmin                   | -0.279 | 0.021  |
| Indigenous forest %         | -0.261 | 0.201  |
| рН                          | -0.164 | -0.437 |
| Scrub %                     | -0.048 | 0.071  |
| Exotic forest %             | -0.011 | -0.276 |
| Low producing pasture %     | 0.018  | -0.144 |
| Other %                     | 0.056  | 0.019  |
| Urban %                     | 0.137  | 0.281  |
| Cropping %                  | 0.151  | 0.121  |
| Conductivity                | 0.17   | -0.448 |
| NOx                         | 0.185  | 0.147  |
| E. coli                     | 0.201  | 0.221  |
| DRP                         | 0.214  | 0.239  |
| TN                          | 0.217  | 0.124  |
| Water temperature           | 0.224  | -0.13  |
| High producing pasture %    | 0.24   | -0.202 |
| NH4N                        | 0.27   | 0.2    |
| ТОС                         | 0.275  | -0.17  |
| Turbidity                   | 0.278  | -0.197 |
| ТР                          | 0.304  | 0.122  |

<sup>&</sup>lt;sup>2</sup> High producing pasture is pasture with a medium to high dry matter production and includes rye grass and white clover (Ministry of Works and Development, Water and Soil Division 1979).

PCA axis 1 scores were then used to represent the range of environmental variables at each site and the relationship between these and macroinvertebrate metrics assessed (based on six annual macroinvertebrate samples collected at each RSoE site between 2004 and 2009).

There was a significant linear relationship (p < 0.001) between environmental variables and all macroinvertebrate metrics apart from Qworms<sup>3</sup> (Table 3.2).

The macroinvertebrate indicators exhibiting the strongest relationship with environmental variables were the proportion of  $EPT^4$  taxa in the sample (%EPT\*), Macroinvertebrate Community Index (MCI)<sup>5</sup> score and the proportion of gastropod taxa (%gastropods). However, all three of these metrics were highly correlated (Clapcott & Olsen 2010).

macroinvertebrate metrics and scores that summarise environmental variability (PCA axis 1) at RSoE sites (n=56) based on data collected between 2004 and 2009 (Source: Clapcott & Olsen 2010, Table 11) Metric F  $r^2$  pTable 1204  $r^2$   $r^2$   $r^2$   $r^2$ 

Table 3.2: Linear regression output for the relationships between

| Metric       | F      | <b>r</b> <sup>2</sup> | р      |
|--------------|--------|-----------------------|--------|
| Таха         | 17.91  | 0.25                  | <0.001 |
| MCI          | 156.05 | 0.74                  | <0.001 |
| MCIsb        | 195.73 | 0.78                  | <0.001 |
| %small       | 92.81  | 0.63                  | <0.001 |
| %large       | 83.92  | 0.61                  | <0.001 |
| %EPT*        | 214.24 | 0.80                  | <0.001 |
| EPT richness | 105.79 | 0.66                  | <0.001 |
| %worms       | 15.90  | 0.23                  | <0.001 |
| %predators   | 21.13  | 0.28                  | <0.001 |
| %gastropods  | 115.33 | 0.68                  | <0.001 |
| QMCI         | 73.47  | 0.58                  | <0.001 |
| QMCIsb       | 128.34 | 0.70                  | <0.001 |
| Qsmall       | 58.38  | 0.52                  | <0.001 |
| Qlarge       | 61.07  | 0.53                  | <0.001 |
| QEPT*        | 197.49 | 0.79                  | <0.001 |
| Qworms       | 4.39   | 0.08                  | 0.041  |
| Qpredators   | 17.29  | 0.24                  | <0.001 |
| Qgastropods  | 81.98  | 0.60                  | <0.001 |

#### 3.3 Metric selection

The availability of reference data is a key aspect to setting numeric outcomes for biological indicators. Currently, MCI is the only macroinvertebrate metric for which there are sufficient reference data available across all river types. These reference data have been obtained from a model that predicts both current and reference MCI scores for each segment of the New Zealand river

<sup>&</sup>lt;sup>3</sup> Quantitative percent of individuals that are worms.

<sup>&</sup>lt;sup>4</sup> Ephemeroptera, plecoptera and trichoptera taxa.

<sup>&</sup>lt;sup>5</sup> The MCI is a biotic index that uses tolerance scores assigned to macroinvertebrate taxa based on their sensitivity to organic pollution to calculate a stream health score (Stark 1985). Although the MCI was originally formulated to represent the effects of organic pollution in hard-bottomed streams it has been shown to adequately represent a range of water quality and habitat impacts (apart from the effect of heavy metals).

network based on environmental variables (Clapcott et al. 2011). It is hoped that this model will be extended to other macroinvertebrate metrics in the near future and that these can also be used in the Regional Plan either as stand-alone metrics or as part of a multi-metric index. In the interim, MCI will be used as the sole indicator of macroinvertebrate community health. As noted earlier, there is a strong linear relationship between MCI scores and the environmental stressor gradient across RSoE sites. Non-linear regression analysis of the relationship between MCI scores and the environmental stressor gradient shows an even stronger relationship (Figure 3.2).

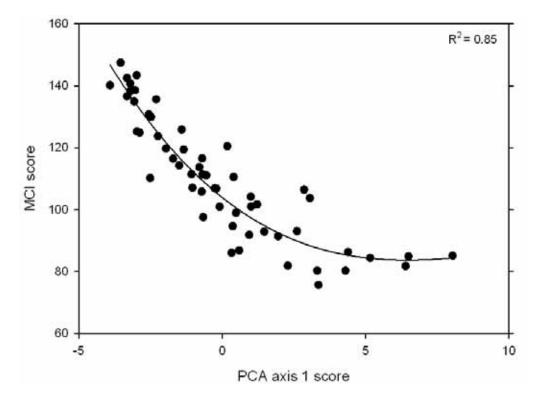



Figure 3.2: Non-linear regression relationship between environmental variables (summarised by PCA axis 1 score) and mean MCI (based on annual samples from 2004–2009, *n*=6 for each site) for 56 RSoE sites (Source: After Clapcott and Olsen 2010, Figure 13)

Note that only the hard bottomed variant of the MCI has been used here. The soft bottomed variant of the MCI developed by Stark and Maxted (2007a) should only be used in streams that are known to be naturally soft bottomed. Although there are many soft bottomed streams<sup>6</sup> in the Wellington region it is unknown whether any of these would occur naturally.

<sup>&</sup>lt;sup>6</sup> Collier and Kelly (2005) use a working definition of a soft bottomed stream of "a stream in which ≥50% of the stream bed is composed of sand, silt or pumice".

## 4. Identification of numeric outcomes for MCI

For each FENZ class the distribution of MCI scores available was used to identify thresholds for four categories of macroinvertebrate community health: excellent, good, fair and poor.

It is intended that the 'excellent' threshold be used as the numeric outcome for rivers and streams identified as "significant aquatic ecosystems" in Appendix 1 of the RPS (GWRC 2013) and that the 'good' threshold be used as the numeric outcome for all other rivers and streams in the Wellington region. Although not required by the RPS (GWRC 2013), the 'fair' and 'poor' thresholds have been identified to assist with the identification of the most degraded rivers and streams in the region.

#### 4.1 Methods

MCI scores were calculated from macroinvertebrate community data collected from 270 sites across the Wellington region as part of historic and current RSoE monitoring, riparian rehabilitation-related monitoring and a number of one-off studies (Table 4.1, Figure 4.1).

| _                                   | -               |                                                |                                                                               |                                         |
|-------------------------------------|-----------------|------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|
| Data source                         | No. of<br>sites | Sampling date                                  | Sampling methods                                                              | Sample analysis                         |
| RSoE<br>monitoring                  | 56              | Annual samples<br>between 2004–2009            | 3 replicates, protocols<br>C1 and C2, 0.5 mm<br>mesh                          | 200 fixed count with scan for rare taxa |
| Historic RSoE monitoring            | 16              | Annual samples<br>between 1999–2003            | 3 replicates, 1 minute<br>kick sample from riffle<br>habitat, 0.5 mm mesh     | Coded abundance                         |
| Riparian<br>monitoring<br>programme | 3               | Annual samples<br>between 2002–2007            | 3 replicates, protocols<br>C1 and C2, 0.5 mm<br>mesh                          | 200 fixed count with scan for rare taxa |
| Project<br>Mangatarere<br>study     | 9               | One off samples<br>taken in summer<br>2010     | Single sample,<br>protocol C1, 0.5mm<br>mesh                                  | 200 fixed count with scan for rare taxa |
| Urban streams<br>study              | 79              | One off samples<br>taken between 2001–<br>2008 | Single sample, 1–2<br>minute kick sample<br>from all habitats,<br>0.5 mm mesh | Full count with subsampling option      |
| REC<br>verification<br>study        | 29              | One-off samples<br>taken in 2001               | 3 replicates, 1 minute<br>kick sample in<br>run/riffle, 0.3 mm mesh           | Full count with subsampling option      |
| Massey<br>University<br>samples     | 78              | One-off samples<br>taken in 2001               | Single sample, 1<br>minute kick sample<br>from riffle habitat,<br>0.5 mm mesh | 100 fixed count                         |

| Table 4.1: Details of macroinvertebrate samples collected from 270 sites across |
|---------------------------------------------------------------------------------|
| the Wellington region                                                           |

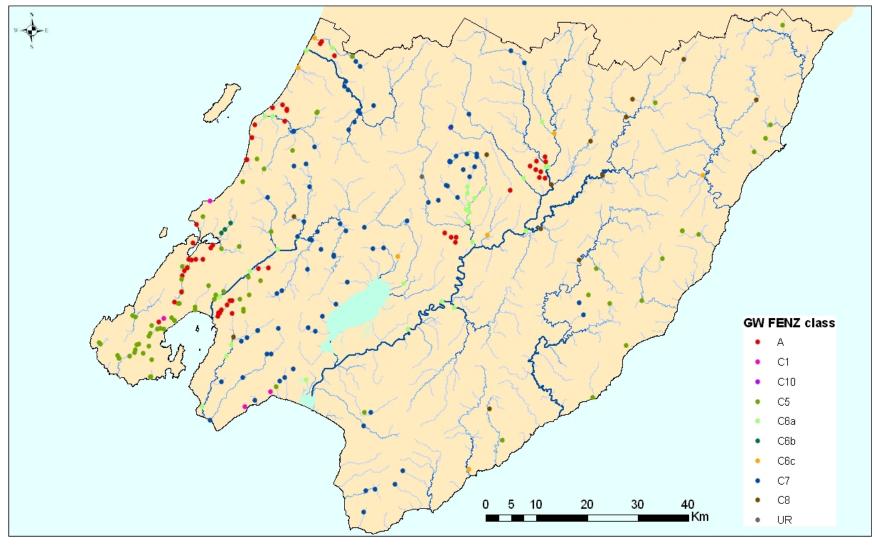



Figure 4.1: Location and FENZ class of 270 sites used to calculate MCI thresholds for the Wellington region

Despite differences in sample collection and analysis methods (Table 4.1), all available data were used to cover the widest possible range of river types and degrees of impact. It was considered that for a non-quantitative metric such as MCI these differences would not have a significant effect on the results.

Each site was assigned a FENZ class and one of two impact categories:

- Reference sites with  $\ge 95\%$  indigenous forest and scrub cover in the upstream catchment based on REC raw data (Snelder et al. 2004)
- Non-reference/Impacted all other sites

#### 4.1.1 Identification of MCI range for each FENZ class

Hering et al. (2006) set out a method for identifying thresholds for a multimetric macroinvertebrate index using the concept of upper and lower anchors. The upper anchor corresponds to the upper threshold of the metric's value under reference conditions while the lower anchor corresponds to the lower threshold of the metric's value under the worst attainable conditions. Although Hering et al. (2006) intended that this method be used to establish thresholds for a multi-metric index, here it has been be used to establish MCI thresholds for specific river classes.

Where sufficient (>30–40 sample sites) reference site data were available the upper anchor of the MCI score range was calculated from the 95<sup>th</sup> percentile of reference site data. Where there were insufficient reference site data, the 75<sup>th</sup> percentile of predicted reference values from a national model of MCI scores (Clapcott et al. 2011) was used. The 75<sup>th</sup> percentile was used because although predictions of contemporary MCI values were highly correlated with measured MCI values (Pearson correlation coefficient *r*=0.886), the model over-predicted MCI values by on average 5 units for the Wellington region (Clapcott & Olsen 2010).

The lower anchor of MCI scores for each class was identified using the 5<sup>th</sup> percentile of data from impacted sites. The 5<sup>th</sup> percentile was used instead of the minimum recorded value to take into account uncertainty over classification and sampling methods for some samples.

Where multiple MCI results were available for a single site, maximum and minimum scores were used for reference and impacted sites, respectively, in calculation of upper and lower anchors for each FENZ class.

#### 4.1.2 Identification of MCI thresholds

For each FENZ class with insufficient measured reference data (all but C7) the MCI score range between the upper and lower anchor values was divided by four to delineate thresholds for four classes: 'excellent', 'good', 'fair' and 'poor'. Results were rounded to the nearest 5 MCI points for simplicity.

For FENZ class C7 the 'excellent' threshold was calculated as the  $25^{\text{th}}$  percentile of reference MCI scores for that class (*n*=50). The MCI range between the 'excellent' boundary and the lower anchor was then divided by three to give the 'good' and "fair" thresholds.

#### 4.1.3 Identification of confidence around thresholds

An understanding of variability in macroinvertebrate metrics associated with measurement error is necessary to ensure that sites that are near a threshold are rated with known precision (Barbour et al. 1999).

Stark (1998) used an ANOVA procedure to determine detectable differences for kick net samples based on MCI values from replicate samples. These analyses suggested that MCI values calculated from single samples, collected according to Protocol C1 (Stark et al. 2001), would need to differ by 10.83 MCI units to be considered significantly different. If the assessment is based on two samples the buffer is reduced to  $\pm 7.66$  MCI points (and to  $\pm 6.25$  points based on three samples). This suggests that if assessment of a site is based on a single sample then results within  $\pm 10$  MCI points of the threshold could fall into either category. Between 2004 and 2009 three replicate macroinvertebrate samples were collected at each RSoE site but from 2009/10 onwards, only a single sample has been collected at each site.

It is recommended that analysis of the precision of MCI score results at RSoE sites be undertaken either using existing data or by collecting additional replicate samples at selected sites. Depending on the precision required this will identify the number of replicate samples required. Given that RSoE sites are likely be graded on a five-yearly basis, this analysis should include assessment of the precision of an MCI score estimate from five years of results.

#### 4.2 Macroinvertebrate health across FENZ classes

A Kruskal-Wallis ANOVA showed that there was a significant (p<0.001) difference in MCI scores collected from the 270 sites across FENZ classes in the Wellington region. However, the difference in scores is likely to be primarily driven by the varying degree of impact from human activities within these classes rather than natural differences. To check this, estimates of the proportion of natural vegetation cover in the upstream catchment (on a scale from 0 to 1 where 1 represented 100% natural cover) from the FENZ database were collated for each site. These were then compared against median MCI scores for each FENZ class (Figure 4.2).

Highest median MCI values were found at sites belonging to classes C10, UR, C1 and C7 (note only one result was available for classes C10 and UR). Sites in these classes tended to have a high proportion of natural vegetation cover in the upstream catchment with the median proportion ranging from 0.75 to 1. Lowest median MCI values were found at sites belonging to classes A, C8, C6c and C6b. Sites representing these classes tended to have a low proportion of natural vegetation cover in the upstream catchment with the median proportion with the median proportion for a low proportion of natural vegetation cover in the upstream catchment with the median proportion of natural vegetation cover in the upstream catchment with the median proportion ranging from 0.1 to 0.28.

The range of natural vegetation cover at sites sampled in each FENZ class was similar to the range of natural cover across all river segments within the class in the Wellington region.

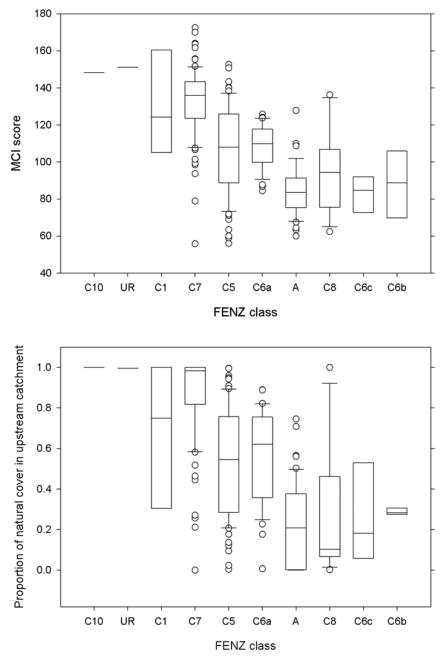



Figure 4.2: Box plots showing (top) range of MCI scores recorded across each FENZ class and (bottom) the proportion of natural cover in the upstream catchment of each macroinvertebrate sampling site. Where multiple MCI results exist for a single site the average was used. C10 *n*=1, UR *n*=1, C1 *n*=4, C7 *n*=83, C5 *n*=74, C6a *n*=38, A *n* 48, C8 *n*=13, C6c *n*=7, C6b *n*=4

#### 4.3 Thresholds for FENZ types C7, C10 and UR

Class C7 was the only class for which there were sufficient reference site data to identify the 'excellent'/'good' threshold from the 25<sup>th</sup> percentile of reference site scores. Due to their upland location and associated lower intensity of human impacts, C7 streams show a narrow range of MCI scores (Figure 4.3). Accordingly, thresholds identified have a range of 30 MCI units from the 'excellent'/'good' boundary of 130 to the 'fair'/'poor' boundary of 100 (Table 4.2).

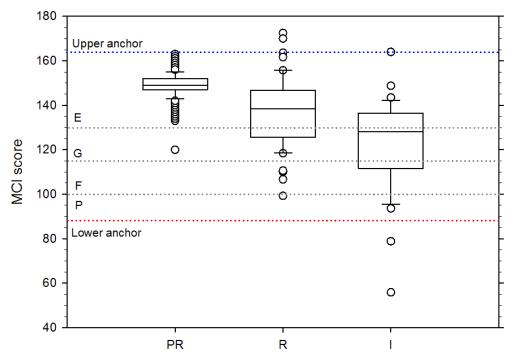



Figure 4.3: The range of MCI scores predicted for class C7 rivers in their natural state (PR, n=2,978) and measured at both reference sites (R, n=50) and impacted sites (I, n=33). Upper and lower anchor thresholds are shown as well as proposed thresholds for 'excellent' (E), 'good' (G), 'fair' (F) and 'poor' (P) categories

Table 4.2: Recommended MCI thresholds for FENZ classes C7, C10 and UR

| Macroinvertebrate health class | Threshold |
|--------------------------------|-----------|
| Excellent                      | ≥130      |
| Good                           | 115–129   |
| Fair                           | 100–114   |
| Poor                           | <100      |

There were insufficient data to identify thresholds for rivers and streams in classes C10 and UR. However, as these classes are limited to the upper Tararua, Rimutaka and Aorangi ranges the thresholds identified for class C7 (which streams in classes C10 and UR flow into) are likely to provide sufficient protection.

#### 4.4 Thresholds for FENZ type C6a

There are no reference data available for rivers and streams in class C6a as all stream and river segments in this class are significantly affected by human activities and land use. Therefore, the upper anchor for this class was estimated from predicted natural MCI scores.

Rivers in class C6a show a relatively narrow range of MCI scores (Figure 4.4). Thresholds identified for this class are the same as those for class C7 (Table 4.3).




Figure 4.4: The range of MCI scores predicted for C6a rivers and streams in their natural state (PR, *n*=433) and measured at impacted sites (I, *n*=38). Upper and lower anchor thresholds are shown as well as proposed thresholds for 'excellent' (E), 'good' (G), 'fair' (F) and 'poor' (P) categories

Table 4.3: Recommended MCI thresholds for FENZ class C6a

| Macroinvertebrate health class | Threshold |
|--------------------------------|-----------|
| Excellent                      | ≥130      |
| Good                           | 115–129   |
| Fair                           | 100–114   |
| Poor                           | <100      |

#### 4.5 Thresholds for FENZ classes C5, C1 and C6b

Data were available from only five reference sites belonging to class C5 and consequently the upper anchor for this class was estimated from predicted natural MCI scores.

Streams in class C5 showed a wide range of MCI scores (Figure 4.5). Accordingly, thresholds range over 45 MCI units from an 'excellent'/'good' threshold of 130 to a 'fair'/'poor' threshold of 85 (Table 4.4).

There were insufficient data to calculate thresholds for rivers and streams in classes C1 and C6b. However, because their physical characteristics are similar to those in class C5 the thresholds identified for this class should provide sufficient protection.

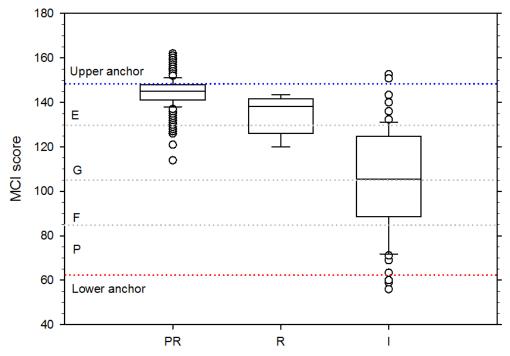



Figure 4.5: The range of MCI scores predicted for rivers and streams in class C5 in their natural state (PR, n=4,538) and measured at both reference sites (R, n=5) and impacted sites (I, n=69). Upper and lower anchor thresholds are shown as well as proposed thresholds for 'excellent' (E), 'good' (G), 'fair' (F) and 'poor' (P) categories

| Macroinvertebrate health class | Threshold |
|--------------------------------|-----------|
| Excellent                      | ≥130      |
| Good                           | 105–129   |
| Fair                           | 85–104    |
| Poor                           | <85       |

Table 4.4: Recommended MCI thresholds for FENZ classes C5, C1 and C6b

#### 4.6 Thresholds for FENZ class C8

The lack of reference site data from rivers and streams in class C8 makes identification of thresholds difficult. There is one small stream in the eastern Wairarapa hill country that, based on GIS information, would meet the reference site criteria. However, due to the inaccessibility of this area, this stream has not yet been sampled. All other streams and rivers in this class are impacted by human activities and land use to some extent.

Based on the limited data available (n=13), streams and rivers in class C8 show a similar range in MCI scores to those in class C5 (Figure 4.6). Accordingly, the thresholds for these two classes are the same (Table 4.5).

Further sampling of rivers and streams in class C8 should be a high priority. Sampling is required across an impact gradient to enable greater confidence in the thresholds derived for this stream class.

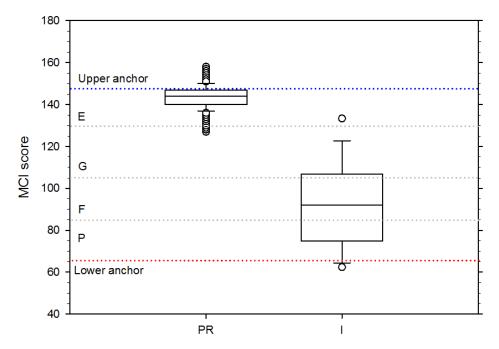



Figure 4.6: The range of MCI scores predicted for C8 rivers and streams in their natural state (PR, n=2,684) and measured at impacted sites (n=13). Upper and lower anchor thresholds are shown as well as proposed thresholds for 'excellent' (E), 'good' (G), 'fair' (F) and 'poor' (P) categories

Table 4.5: Recommended MCI thresholds for FENZ class C8

| Macroinvertebrate health class | Threshold |
|--------------------------------|-----------|
| Excellent                      | ≥130      |
| Good                           | 105–129   |
| Fair                           | 85–104    |
| Poor                           | <85       |

#### 4.7 Thresholds for FENZ class C6c

There are no reference data for sites in class C6c as all examples of this stream type are significantly affected by human activities or land use. In addition, few data have been collected from impacted sites in this category.

Based on the limited data available, streams and rivers in class C6c show a relatively narrow range in MCI score with thresholds ranging across 35 MCI units from the 'excellent'/'good' boundary of 120 to the 'fair'/'poor' boundary of 85 (Figure 4.6, Table 4.6).

Collection of additional data from streams in this class should be a high priority to enable refinement of these thresholds.

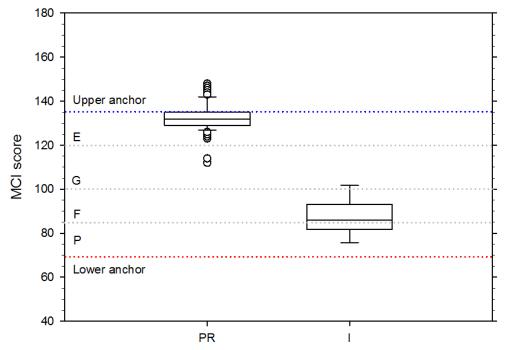



Figure 4.7: The range of MCI scores predicted for rivers in class C6c in their natural state (PR, *n*=289) and measured at impacted sites (I, *n*=7). Upper and lower anchor thresholds are shown as well as proposed thresholds for 'excellent' (E), 'good' (G), 'fair' (F) and 'poor' (P) categories

Table 4.6: Recommended MCI thresholds for FENZ class C6c

| Macroinvertebrate health class | Threshold |
|--------------------------------|-----------|
| Excellent                      | ≥120      |
| Good                           | 100–119   |
| Fair                           | 85–99     |
| Poor                           | <85       |

#### 4.8 Thresholds for FENZ classes A and B

No reference site data are available for rivers and streams in class A. Based on GIS data there may be some sites that meet the criteria for reference condition in the western foothills of the Aorangi Range. However, these sites have yet to be sampled. In the meantime, the upper anchor for class A streams has been estimated from the 75<sup>th</sup> percentile of predicted natural MCI scores.

A high proportion of river and stream segments in class A are surrounded by intensive agricultural or urban land use and consequently the MCI scores measured at impacted sites in this class are typically low (Figure 4.8). Thresholds range over 40 MCI units from the 'excellent'/'good' boundary of 125 to the 'fair'/'poor' boundary of 85 (Table 4.7).

There are no data with which to identify MCI thresholds for streams in FENZ class B. However, as these streams are likely to be most physically similar to those in class A, the same thresholds are recommended until further information becomes available.

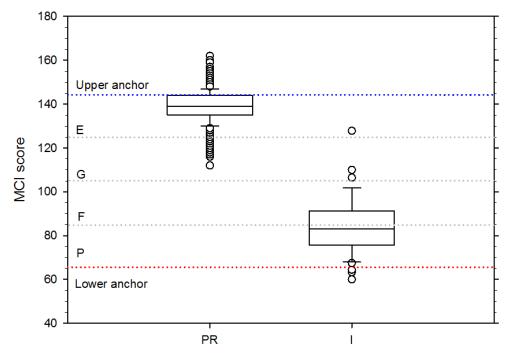



Figure 4.8: The range of MCI scores predicted for rivers in class A in their natural state (PR, *n*=4,248) and measured at impacted sites (*n*=48). Upper and lower anchor thresholds are shown as well as proposed thresholds for 'excellent' (E), 'good' (G), 'fair' (F) and 'poor' (P) categories

Table 4.7: Recommended MCI thresholds for FENZ classes A and B

| Macroinvertebrate health class | Threshold |
|--------------------------------|-----------|
| Excellent                      | ≥125      |
| Good                           | 105–124   |
| Fair                           | 85–104    |
| Poor                           | <85       |

#### 4.9 Numeric outcomes for MCI

Using the 'excellent' and 'good' thresholds identified above as the numeric outcomes for 'significant' and 'healthy' levels of protection respectively the outcomes for MCI in Table 4.8 are recommended.

Table 4.8: Recommended MCI outcomes for 'significant aquatic ecosystem' and 'healthy aquatic ecosystem' levels of protection for FENZ classes in the Wellington region

| FENZ class          | Significant aquatic<br>ecosystem outcome<br>(Chl. <i>a</i> mg/m²) | Healthy aquatic<br>ecosystem outcome<br>(Chl. <i>a</i> mg/m <sup>2</sup> ) |
|---------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|
| C7, C6a, C10 and UR | 130                                                               | 115                                                                        |
| C5, C8, C6b and C1  | 130                                                               | 105                                                                        |
| C6c                 | 120                                                               | 100                                                                        |
| A,B                 | 125                                                               | 105                                                                        |

### 5. Macroinvertebrate standards

Specific activities, such as point-source discharges, water abstraction or works in the bed of rivers and streams, can have a direct detrimental impact on macroinvertebrate communities. In this context, it is recommended that the Regional Plan define numeric thresholds relating to percent <u>change</u> in macroinvertebrate metrics that can be used to assess the effects of specific activities.

Whilst MCI is well suited to SoE reporting and the setting of management objectives or targets, QMCI is considered better adapted to direct comparisons between different sets of data collected to assess the effects of a specific activity, such as upstream/downstream comparisons. Because it is a quantitative rather than a qualitative index, the QMCI is considered less likely to be influenced by upstream macroinvertebrate communities<sup>7</sup>, and more able to detect changes in community composition (Quinn 2009). Stark and Maxted (2007b) also maintain that QMCI (and SQMCI) are more suited to compliance monitoring than SoE monitoring.

A change of 20% in QMCI corresponds to a degree of change that is generally ecologically significant, can be statistically detected with an acceptable level of sampling effort and can be tested using relatively simple statistical methods (Stark 2010). This threshold is recommended as a maximum change that may occur as a result of an activity or a group of activities, either in space (eg, upstream/downstream comparison) or in time (before/after comparison). Because it is directly associated with the potential effects of identifiable activities, this threshold is well suited to be used as a standard in the Regional Plan.

Although good practice requires that macroinvertebrate communities be sampled following stable flow conditions, macroinvertebrate and trout live in the streams and rivers year-round, and at all flow conditions. Thus, this maximum change standard should apply at all times.

<sup>&</sup>lt;sup>7</sup> In the context of upstream/downstream comparisons, downstream MCI is easily influenced by small numbers of macroinvertebrate species that may drift from the upstream site.

### 6. Supporting factors for macroinvertebrate health

In order for the macroinvertebrate metric outcomes proposed in Section 4 to be achieved GWRC's Regional Plan must include measures to manage the key environmental variables that affect macroinvertebrate community health. These are summarised in this section.

#### 6.1 Instream temperature and dissolved oxygen

Water temperature is a fundamental variable in aquatic ecosystems which affects all facets of aquatic insect life-history and distribution. Sub-lethal increases in temperature can influence stream invertebrates by increasing growth rates, reducing longevity, and altering size and fecundity at emergence (Scarsbrook 2000). A national survey of invertebrates in New Zealand rivers found that stoneflies and mayflies were scarce where the maximum river temperatures exceeded 19 and 21.5°C, respectively (Quinn & Hickey 1990).

Dissolved oxygen is vital for life in rivers and streams. Low concentrations of dissolved oxygen can be a major stressor on aquatic life, including macroinvertebrates which depend on oxygen for their efficient functioning.

#### 6.2 Nutrient concentration and periphyton biomass

The effect of nutrients on river and stream macroinvertebrate communities is largely indirect<sup>8</sup>. Nitrogen and phosphorus may stimulate instream plant growth where light, substrate and flow regime conditions are suitable. The presence of aquatic plant proliferations then acts to reduce the quality of instream habitat for macroinvertebrates. A change in benthic invertebrate community structure with increasing periphyton biomass has been a common observation in New Zealand streams (Biggs 2000). A significant (p<0.001) negative relationship was found between MCI score and periphyton biomass (as indicated by chlorophyll *a* concentration) data collected from RSoE sites between 2004 and 2012 (Greenfield 2014b).

The major sources of nutrient inputs to rivers and streams in the Wellington region are intensive agriculture and horticulture in rural areas (through both overland runoff and leaching through the soil profile into groundwater and streams) and sewer-stormwater cross connections in urban areas (Perrie et al. 2012).

#### 6.3 Toxicants

There are a wide range of substances that are directly toxic to aquatic invertebrates including nitrate, ammonia, heavy metals, polycyclic aromatic hydrocarbons (PAHs), pesticides and herbicides. The major sources of toxicants to rivers and streams in the Wellington region include urban stormwater, agricultural runoff and municipal sewage discharges (Perrie et al. 2012).

Toxicants can have a range of sub-lethal effects on macroinvertebrates such as inhibition of growth or reproduction and can be lethal in high concentrations. Of the relatively few native macroinvertebrate species for which toxicological

<sup>&</sup>lt;sup>8</sup> Nitrate-nitrogen can be directly toxic to some macroinvertebrate taxa at concentrations of 1 mg/L or higher (Hickey & Martin 2009).

sensitivity studies have been undertaken the crustacean *Paracalliope*, gastropod *Potamopyrgus* and the mayfly *Deleatidium* appear to be the most sensitive to ammonia and heavy metals (Hickey 2000). At the community level, metal pollution in streams has been shown to reduce abundance and species richness of mayflies, the number of EPT taxa and total taxonomic richness (Hickey 2000).

#### 6.4 Habitat quality

Stream habitat quality is a critical factor in macroinvertebrate community health. The diversity of flow conditions such as riffles, runs and pools can affect the diversity and type of macroinvertebrate taxa present in a stream reach. Streambed particle size is another strong driver of the macroinvertebrate community in streams, with macroinvertebrate diversity and abundance greatest on cobble and boulder sized substrate (Death 2000). Fine sediments such as sand and silt are considered unsuitable for the majority of invertebrates apart from worms, molluscs, some midges and the burrowing mayfly *Ichthybotus hudsoni* (Parkyn et al. 2010). In their analysis of macroinvertebrate data from RSoE sites, Clapcott and Olsen (2010) found that the percentage of silt in the substrate was the single variable that was most highly correlated with macroinvertebrate community composition.

The amount of stream side vegetation and shade are also critical for macroinvertebrate community health; vegetation and shade regulate stream temperature and light availability and the vegetation provides a source of organic food for macroinvertebrates.

#### 6.5 Water quantity and flow

Water depth and velocity are important predictors of macroinvertebrate species distribution with basic life-function requirements often driving preferences for particular flow conditions (Jowett 2000). Flow also affects macroinvertebrates indirectly by influencing substrate composition, water chemistry, the delivery rate of nutrients and organic particles, and habitat availability and suitability (Dewson et al. 2007a). Invertebrate community composition often changes in response to low or reduced flow. These changes probably are a result of increased habitat suitability for some species and decreased suitability for others (Dewson et al 2007a).

Dewson et al. (2007b) found that the effect of reducing instream width, velocity and depth on macroinvertebrate communities varied depending on water quality. The greatest effect occurred in pristine streams while no effect was observed in streams with poor water quality. This is likely to be due to the different sensitivity to changes in physical habitat of the invertebrate communities involved.

Climate and water abstraction are the main factors that affect flow and water velocity in rivers and streams. In the Wellington region, water is abstracted from rivers, streams and associated groundwater primarily for drinking water supply or irrigation (Keenan et al. 2012).

## 7. Summary and recommendations

The recommended approach for identification of attributes and numeric outcomes for macroinvertebrate community health is to select at least one metric from each of the four main types (composition/abundance, richness/diversity, sensitivity/tolerance and functional) based on correlation with key environmental variables that reflect the degree of human impact. Ideally relationships between macroinvertebrate metrics and the environmental gradient should be undertaken individually for each of the 11 FENZ classes in the Wellington region. Numeric outcomes for each FENZ class should then be identified by dividing the range of results available in each class evenly to identify thresholds for the 'excellent', 'good', 'fair' and 'poor' categories.

Currently, a lack of data across almost all FENZ classes, particularly reference data, means that it is not possible to use this approach to its full extent. In the interim, MCI is recommended as the sole attribute to represent macroinvertebrate community health based on its high correlation with environmental factors across the RSoE site network. Predicted reference MCI scores from a national model were used along with measured scores from across the region to estimate the range of MCI scores within each FENZ class and to identify MCI thresholds for the four categories. It is recommended that the 'excellent' threshold be used as the numeric outcome for rivers and streams identified as having significant indigenous ecosystem values in the RPS (GWRC 2013) and that the 'good' threshold should be used as the numeric outcome for all other rivers and streams in the region.

#### 7.1 Recommendations for future work

The following work should be undertaken to allow greater representation of all main FENZ classes and to develop numeric outcomes for additional macroinvertebrate attributes:

- Collect macroinvertebrate samples from additional sites in FENZ classes C5, C8, C6c, A and B. Additional sampling from streams in class C5 should focus on reference sites while sampling in all other classes should be across the entire impact gradient. Enough additional sites should be sampled to bring the total number of sites sampled in each class to 30 (apart from class B where 5 sites will be sufficient as streams are of limited extent).
- Investigate the possibility of using macroinvertebrate data from sites in the Hawke's Bay and Manawatu/Wanganui regions where FENZ classes are shared. Data sharing would be particularly useful where reference site data are available.
- Where available, use estimates of reference condition for additional macroinvertebrate indicators from national models to allow inclusion of a greater range of macroinvertebrate indicators. If multiple macroinvertebrate indicators are identified the possibility of a single multimetric index should be investigated.

- Undertake further assessment to identify which streams in the Wellington region have naturally soft substrate. Streams with naturally soft substrate should then be assessed using the soft bottomed variant of the MCI.
- Undertake further analysis of the precision of the methods for macroinvertebrate sampling and analysis methods to identify confidence limits around the thresholds identified for each macroinvertebrate indicator. This analysis should be undertaken either using existing data or by collecting additional replicate samples at selected sites.

## References

Barbour M, Gerritsen J, Snyder B and Stribling J. 1999. *Rapid Bioassessment Protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and Fish* (2<sup>nd</sup> ed). USEPA. Washington DC. EPA/841-B-98-010.

Biggs B. 2000. *New Zealand periphyton guideline: detecting, monitoring and managing enrichment of streams*. Prepared for the Ministry for the Environment by the National Institute for Water and Atmosphere, Christchurch.

Clapcott J, Young R, Goodwin E, Leathwick J and Kelly D. 2011. *Relationships between multiple land-use pressures and individual and combined indicators of stream ecological integrity*. DOC Research and Development Series 326. Department of Conservation, Wellington.

Clapcott J and Olsen D. 2010. *Macroinvertebrate community characteristics in the Wellington region*. Cawthron Institute Report No. 1799 prepared for Greater Wellington Regional Council.

Collier K and Kelly J. 2005. *Regional guidelines for ecological assessment of freshwater environments: Macroinvertebrate sampling in wadeable streams.* Environment Waikato Technical Report TR2005/02.

Death R. 2000. Invertebrate-substratum relationships. In: Collier KJ, Winterbourne MJ (eds). *New Zealand Stream Invertebrates: Ecology and implications for management*. New Zealand Limnological Society, pp. 157–178.

Dewson ZS, James ABW and Death RG. 2007a. A review of the consequences of decreased flow for in stream habitat and macroinvertebrates. *Journal of the North American Benthological Society*, 26(3): 401–415.

Dewson ZS, James ABW and Death RG. 2007b. Invertebrate community responses to experimentally reduced discharge in small streams of different water quality. *Journal of the North American Benthological Society*, 26(4): 754–766.

GWRC. 2013. *Regional Policy Statement for the Wellington region*. Greater Wellington Regional Council Publication No. GW/EP-G-13/21, Wellington.

Greenfield S. 2014a. *Recommended changes to Schedule H attributes and outcomes for the draft Natural Resources Plan: Rivers and streams*. Unpublished internal memorandum (Document No. #1346977), Greater Wellington Regional Council, Wellington.

Greenfield S. 2014b. *Periphyton and macrophyte outcomes for aquatic ecosystem health in rivers and streams: Technical report to support the draft Natural Resources Plan.* Greater Wellington Regional Council, Publication No. GW/ESCI-T-14/58, Wellington.

Hering D, Feld CK, Moog O and Ofenbock T. 2006. Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: Experiences from the European AQEM and STAR projects and related initiatives. *Hydrobiologia*, 566: 311–324.

Hickey C. 2000. Ecotoxicology: Laboratory and field approaches. In: Collier KJ, Winterbourne MJ (eds). *New Zealand Stream Invertebrates: Ecology and implications for management*. New Zealand Limnological Society, pp. 313–343.

Hickey C and Martin M. 2009. A review of nitrate toxicity to freshwater aquatic species. Environment Canterbury, Report No. R09/57.

Jowett I. 2000. Flow management. In: Collier KJ and Winterbourne MJ (eds). *New Zealand stream invertebrates: Ecology and implications for management*. New Zealand Limnological Society, pp. 289–312.

Keenan L, Thompson M and Mzila D. 2012. *Freshwater allocation and availability in the Wellington region: State and trends.* Greater Wellington Regional Council, Publication No. GW/EMI-T-12/141, Wellington.

Parkyn S, Collier K, Clapcott S, David B, Davies-Colley R, Matheson F, Quinn J, Shaw W and Storey R. 2010. *The restoration indicator toolkit: Indicators for monitoring the ecological success of stream restoration*. National Institute of Water & Atmospheric Research Ltd, Hamilton.

Perrie A, Morar S, Milne JR and Greenfield S. 2012. *River and stream water quality and ecology in the Wellington region: State and trends.* Greater Wellington Regional Council, Publication No. GW/EMI-T-12/143, Wellington.

Quinn J. 2009. Section 42a report of Dr John Martin Quinn on behalf of Horizons Regional Council. Presented to the Hearings Panel for the Proposed One Plan notified by the Manawatu-Wanganui Regional Council.

http://www.horizons.govt.nz/assets/one-plan-publications-and-reports/Officers-reportswater-hearing/Dr-John-Martin-Quinn.pdf

Quinn J and Hickey CW. 1990. Characterisation and classification of benthic invertebrate communities in 88 New Zealand rivers in relation to environmental factors. *New Zealand Journal of Marine and Freshwater Research*, 24: 387–409.

Scarsbrook MR. 2000. Life histories. In: Collier KJ, Winterbourne MJ (eds). *New Zealand Stream Invertebrates: Ecology and implications for management*. New Zealand Limnological Society, pp. 76–99.

Snelder T, Biggs B and Weatherhead M. 2004. *New Zealand River Environment Classification user guide*. Ministry for the Environment, Wellington.

Stark JD. 1985. A macroinvertebrate community index of water quality for stony streams. Water & Soil Miscellaneous Publication, 87. National Water and Soil Conservation Authority, Wellington.

Stark JD. 2010. Determination of ecologically meaningful changes in QMCI. Appendix 4 of Horizons Regional Council. 2010. End of hearing report of Kate Mcarthur, Jon Roygard, Helen Marr, Natasha James, Clare Barton and Barry Gilliland on behalf of Horizons Regional Council.

http://www.horizons.govt.nz/assets/1plan\_eoh-report/Appendix-4-Advice-from-John-Stark-on-QMCI-Standard.pdf Stark JD, Boothroyd IKG, Harding JS, Maxted JR and Scarsbrook MR. 2001. *Protocols for sampling macroinvertebrates in wadeable streams*. New Zealand Macroinvertebrate Working Group Report No. 1. Prepared for the Ministry for the Environment. Sustainable Management Fund Project No. 5103.

Stark JD and Maxted JR. 2007a. A biotic index for New Zealand's soft-bottomed streams. *New Zealand Journal of Marine and Freshwater Research*, 41(1).

Stark JD and Maxted JR. 2007b. A user guide for the Macroinvertebrate Community Index. Prepared for the Ministry for the Environment. Cawthron Report No. 1166.

Warr S. 2009. *River ecosystem classes for the Wellington region – Part 1*. Unpublished internal report (Document No. #655606), Greater Wellington Regional Council, Wellington.

Warr S. 2010. *River ecosystem classes for the Wellington region – Part 2*. Unpublished internal report (Document No. #792833), Greater Wellington Regional Council, Wellington.

Warr S, Perrie A and McLea M. 2009. *Selection of rivers and lakes with significant indigenous ecosystems*. Greater Wellington Regional Council, Publication No. GW/EP-G-09/29, Wellington.

## Acknowledgments

This report benefitted from review by Dr Joanne Clapcott (Cawthron Institute) and Juliet Milne (GWRC). Dr Kevin Collier (Waikato University) and Dr Russell Death (Massey University) also provided input on the methodology used.

## Appendix 1: Macroinvertebrate sampling sites

| Project ID | Site ID | Site name                                     | FENZ class | Site type | NZTM<br>Easting | NZTM<br>Northing |
|------------|---------|-----------------------------------------------|------------|-----------|-----------------|------------------|
| RSoE       | RS01    | Mangapouri Stream at Rahui Rd                 | А          | I         | 1783373         | 5484901          |
| RSoE       | RS02    | Mangapouri Stream at Bennetts Rd              | А          | 1         | 1780903         | 5487645          |
| RSoE       | RS03    | Waitohu Stream at Forest Park                 | C7         | R         | 1787593         | 5483689          |
| RSoE       | RS04    | Waitohu Stream at Norfolk Crescent            | C6c        | I         | 1779537         | 5488304          |
| RSoE       | RS05    | Otaki River at Pukehinau                      | C7         | R         | 1785426         | 5478749          |
| RSoE       | RS06    | Otaki River at Mouth                          | C6a        | I         | 1777982         | 5485886          |
| RSoE       | RS07    | Mangaone Stream at Sims Road Bridge           | C6c        | I         | 1776242         | 5482407          |
| RSoE       | RS08    | Ngarara Stream at Field Way                   | A          | I         | 1771180         | 5474620          |
| RSoE       | RS09    | Waikanae River at Mangaone Walkway            | C5         | I         | 1779974         | 5473638          |
| RSoE       | RS10    | Waikanae River at Greenaway Rd                | C6a        | I         | 1771223         | 5472915          |
| RSoE       | RS11    | Whareroa Stream at Waterfall Rd               | C5         | 1         | 1768074         | 5464532          |
| RSoE       | RS12    | Whareroa Stream at QE Park                    | A          | I         | 1765976         | 5464400          |
| RSoE       | RS13    | Horokiri Stream at Snodgrass                  | C6b        | I         | 1761804         | 5450653          |
| RSoE       | RS14    | Pauatahanui Stream at Elmwood Bridge          | C5         | 1         | 1761097         | 5446783          |
| RSoE       | RS15    | Porirua Stream at Glenside Overhead Cable     | C5         | I         | 1753289         | 5438364          |
| RSoE       | RS16    | Porirua Stream at Milk Depot                  | C5         | I         | 1754366         | 5443031          |
| RSoE       | RS17    | Makara Stream at Kennels                      | C5         | 1         | 1743530         | 5433635          |
| RSoE       | RS18    | Karori Stream at Makara Peak Mountain Bike Pk | C5         | I         | 1744212         | 5426874          |
| RSoE       | RS19    | Kaiwharawhara Stream at Ngaio Gorge           | C5         | I         | 1749069         | 5431077          |
| RSoE       | RS20    | Hutt River at Te Marua Intake Site            | C7         | 1         | 1780071         | 5450158          |
| RSoE       | RS21    | Hutt River Opposite Manor Park Golf Club      | C6a        | I         | 1766679         | 5442285          |
| RSoE       | RS22    | Hutt River at Boulcott                        | C6a        | I         | 1760858         | 5437486          |
| RSoE       | RS23    | Pakuratahi River 50m Below Farm Creek         | C7         | 1         | 1784607         | 5451677          |
| RSoE       | RS24    | Mangaroa River at Te Marua                    | C7         | I         | 1778543         | 5448643          |
| RSoE       | RS25    | Akatarawa River at Hutt Confluence            | C7         | I         | 1776183         | 5449184          |
| RSoE       | RS26    | Whakatiki River at Riverstone                 | C6a        | I         | 1772256         | 5446747          |
| RSoE       | RS27    | Waiwhetu Stream at Wainui Hill Bridge         | A          | I         | 1760565         | 5434141          |
| RSoE       | RS28    | Wainuiomata River at Manuka Track             | C7         | R         | 1768242         | 5430634          |
| RSoE       | RS29    | Wainuiomata River Upstr of White Bridge       | C6a        | I         | 1757316         | 5415724          |
| RSoE       | RS30    | Orongorongo River at Orongorongo Station      | C7         |           | 1758930         | 5413094          |
| RSoE       | RS31    | Ruamahanga River at McLays                    | C7         | R         | 1818149         | 5485809          |
| RSoE       | RS32    | Ruamahanga River at Te Ore Ore                | C6a        | I         | 1825574         | 5463019          |
| RSoE       | RS33    | Ruamahanga River at Gladstone Bridge          | C6a        | I         | 1821208         | 5450327          |
| RSoE       | RS34    | Ruamahanga River at Pukio                     | C6a        | 1         | 1797832         | 5431010          |
| RSoE       | RS35    | Mataikona tributary at Sugar Loaf Rd          | C5         | I         | 1871844         | 5490906          |
| RSoE       | RS36    | Taueru River at Castlehill                    | C8         | I         | 1852300         | 5484198          |
| RSoE       | RS37    | Taueru River at Gladstone                     | C8         | 1         | 1824148         | 5450815          |
| RSoE       | RS38    | Kopuaranga River at Stewarts                  | C6c        | I         | 1826761         | 5469569          |
| RSoE       | RS39    | Whangaehu River at 250m from Confluence       | C8         | I         | 1826267         | 5459407          |
| RSoE       | RS40    | Waipoua River at Colombo Rd Bridge            | C6a        | 1         | 1825018         | 5462890          |
| RSoE       | RS41    | Waingawa River at South Rd                    | C6a        | I         | 1820716         | 5460649          |
| RSoE       | RS42    | Whareama River at Gauge                       | C6c        | I         | 1856090         | 5461229          |
| RSoE       | RS43    | Motuwaireka Stream at headwaters              | C5         | I         | 1852017         | 5450302          |
| RSoE       | RS44    | Totara Stream at Stronvar                     | C5         | I         | 1848025         | 5444916          |
| RSoE       | RS45    | Parkvale tributary at Lowes Reserve           | А          | I         | 1818094         | 5458352          |
| RSoE       | RS46    | Parkvale Stream at weir                       | C6c        | I         | 1813515         | 5449469          |
| RSoE       | RS47    | Waiohine River at Gorge                       | C7         | R         | 1801889         | 5455995          |
| RSoE       | RS48    | Waiohine River at Bicknells                   | C6a        | I         | 1810615         | 5448099          |
| RSoE       | RS49    | Beef Creek at headwaters                      | C7         | R         | 1803963         | 5456398          |
| RSoE       | RS50    | Mangatarere Stream at State Highway 2         | C6a        | 1         | 1809768         | 5452160          |
| RSoE       | RS51    | Huangarua River at Ponatahi Bridge            | C6a        | 1         | 1807009         | 5435213          |
| RSoE       | RS52    | Tauanui River at Whakatomotomo Rd             | C7         | R         | 1790648         | 5414515          |
| RSoE       | RS53    | Awhea River at Tora Rd                        | C6c        | I         | 1809951         | 5403289          |
| RSoE       | RS54    | Coles Creek tributary at Lagoon Hill Rd       | C8         | I         | 1814020         | 5415217          |
| RSoE       | RS55    | Tauherenikau River at Websters                | C6a        | I         | 1797082         | 5439942          |

| Project ID | Site ID    | Site name                                   | FENZ class | Site type | NZTM<br>Easting | NZTM<br>Northing |
|------------|------------|---------------------------------------------|------------|-----------|-----------------|------------------|
| RSoE       | RS56       | Waiorongomai River at Forest Park           | C7         | R         | 1779604         | 5430559          |
| HRSoE      | FB23       | Hutt River at Birchville Canoe Club         | C6a        | I         | 1776180         | 5449084          |
| HRSoE      | FB18       | Karori Stream Below Confluence With Sth Mak | C5         | I         | 1740951         | 5425286          |
| HRSoE      | FB27       | Mangaroa River at Kalcoolies Corner         | C7         | 1         | 1773093         | 5438557          |
| HRSoE      | FB21       | Ngauranga Stream 400m Above Mouth           | C5         | 1         | 1751929         | 5432617          |
| HRSoE      | FB14       | Ohariu Stream 50m above Makara Stream       | C5         | I         | 1744117         | 5433321          |
| HRSoE      | FB19       | Owhiro Stream at Mouth                      | C5         | I         | 1747104         | 5421529          |
| HRSoE      | FB37       | Ruamahanga River at Double Bridges          | C6a        | 1         | 1824387         | 5471781          |
| HRSoE      | FB40       | Ruamahanga River at Waihenga Bridge         | C6a        | I         | 1804671         | 5436467          |
| HRSoE      | FB33       | Wainuiomata River at Golf Course            | C6a        | I         | 1762084         | 5425649          |
| HRSoE      | FB32       | Wainuiomata River at Leonard Wood Park      | C6a        | I         | 1763060         | 5427853          |
| HRSoE      | FB10       | Horokiri Stream at Ongly                    | C6b        | I         | 1761188         | 5449882          |
| HRSoE      | FB25       | Hutt River u/s Melling Bridge               | C6a        | I         | 1760579         | 5437286          |
| HRSoE      | FB36       | Ruamahanga River at Mt Bruce                | C7         | I         | 1820931         | 5483375          |
| HRSoE      | FB08       | Waikanae River at Oxbow Boat Ramp           | C6a        | I         | 1769682         | 5472885          |
| HRSoE      | FB06       | Waikanae River at Reikorangi Bridge         | C7         | 1         | 1775382         | 5469985          |
| HRSoE      | FB01       | Waitohu Stream at Water Supply Intake       | C7         | 1         | 1786883         | 5484686          |
| PM         | PM1        | Mangatarere Stream at Road End              | C7         | R         | 1806170         | 5464053          |
| PM         | PM2        | Mangatarere Stream at Gorge                 | C7         | I         | 1811484         | 5465442          |
| PM         | PM3        | Mangatarere Stream at Belvedere Road        | C6a        | I         | 1811047         | 5456808          |
| PM         | PM4        | Hinau Stream at Hinau Gully Road            | C7         | I         | 1810120         | 5461005          |
| PM         | PM5        | Enaki Stream at Belvedere Road              | C6a        | I         | 1809643         | 5457736          |
| PM         | PM6        | Kaipaitangata Stream at Dalefield Road      | C6a        | I         | 1809327         | 5454528          |
| PM         | PM7        | Mangatarere Stream at Dalefield Road        | C6a        | I         | 1810012         | 5453960          |
| PM         | PM8        | Mangatarere Stream at State Highway 2       | C6a        | I         | 1809779         | 5452134          |
| PM         | PM9        | Beef Creek at State Highway 2               | C8         | I         | 1809836         | 5451891          |
| RIP        | RIP1       | Enaki downstream                            | C6a        |           | 1809931         | 5455465          |
| RIP        | RIP2       | Kakariki Downstream                         | A          |           | 1773211         | 5475132          |
| RIP        | RIP3       | Kakariki reference                          | A          |           | 1774047         | 5474257          |
| REC        | ABB        | Akatarawa River                             | C7         |           | 1777415         | 5452199          |
| REC        | BM1        | Mangatarere Trib                            | C7         | R         | 1806220         | 5463978          |
| REC        | BM2        | Mangatarere stream                          | C7         | 1         | 1809465         | 5465531          |
| REC        | BM3        | Kaipaitangata                               | C7         |           | 1805673         | 5459189          |
| REC        | BM4a       | Kaipaitanga Stream                          | C6a        |           | 1809345         | 5454487          |
| REC        | BO1        | Pukeatua Stream                             | C7         | R         | 1788153         | 5474066          |
| REC        | BO1<br>BO2 | Waiatapia Stream                            | C7         | R         | 1788465         | 5473488          |
| REC        | BO3        | Waiotauru River                             | C7         | R         | 1787378         | 5471832          |
| REC        | BO3<br>BO4 | Otaki Stream                                | C7         |           | 1786156         | 5478084          |
| REC        | WBA        | Wainuiomata River                           | C7         | R         | 1768301         | 5430758          |
| REC        | PG5        | Wainuioru                                   | C8         |           | 1831679         | 5444591          |
| REC        | TGC2       | Waindiord<br>Waipawa Stream Trib            | C8         |           | 1836268         | 5461267          |
| REC        | WGA        | Walpawa Stream Thb<br>Whangaehu River       | C8         |           | 1833898         | 5468058          |
| REC        | PM1        | Hinau Rd Stream                             | C7         | 1         |                 |                  |
|            |            |                                             | C7         | 1         | 1808779         | 5462387          |
| REC<br>REC | PM2<br>PM3 | Hururua Rd Stream<br>Mangatarere Stream     | C7         | R         | 1811036         | 5462934          |
|            |            |                                             | C7         |           | 1806260         | 5463926          |
| REC        | PM4        | Mangatarere Stream                          |            | R         | 1807381         | 5465031          |
| REC        | PM5        | Mangatarere Stream                          | C7         | R         | 1811413         | 5464950          |
| REC        | PM6        | Kaipaitangata Trib                          | C7         |           | 1807633         | 5456866          |
| REC        | HRC        | Horokiri stream                             | C6b        |           | 1762980         | 5451807          |
| REC        | MRD        | Mangaroa River                              | C7         | <br>      | 1772134         | 5437988          |
| REC        | PR1        | Rockhill Rd Stream                          | C5         | <br>      | 1833489         | 5437711          |
| REC        | PR2        | Opunake Stream                              | C7         |           | 1831612         | 5436193          |
| REC        | PR5        | Oamukura Trib                               | C7         | 1         | 1832468         | 5433802          |
| REC        | RM1        | Mangatarere Stream                          | C6a        | I         | 1812751         | 5458559          |
| REC        | RM2        | Tea Creek                                   | C8         | I         | 1813442         | 5465350          |
| REC        | RM3        | Enaki Stream                                | C6a        | I         | 1809652         | 5459036          |
| REC        | WRA        | Waitohu Stream                              | C5         | I         | 1787001         | 5484721          |

| Project ID | Site ID | Site name                      | FENZ class | Site type | NZTM<br>Easting | NZTM<br>Northing |
|------------|---------|--------------------------------|------------|-----------|-----------------|------------------|
| REC        | WRB     | Waikane River                  | C7         | I         | 1775354         | 5469906          |
| Urban      | ARSL    | Airlie Road Stream             | A          | I         | 1756180         | 5451586          |
| Urban      | BL      | Black Stream lower             | C8         | I         | 1763577         | 5429374          |
| Urban      | BU      | Black Stream upper             | A          | I         | 1763253         | 5434120          |
| Urban      | СН      | Charthouse St Stream           | A          | 1         | 1758962         | 5446980          |
| Urban      | CSL     | Collins Stream lower           | C7         | I         | 1778980         | 5448484          |
| Urban      | CSU     | Collins Stream upper           | C7         | R         | 1780726         | 5446749          |
| Urban      | DCL     | Duck Creek                     | A          | 1         | 1759480         | 5447486          |
| Urban      | FS2     | Porirua Stream mid             | A          | I         | 1753816         | 5442500          |
| Urban      | GRE     | Grenada Stream at Seton Nossit | C5         | I         | 1752538         | 5436093          |
| Urban      | GRE1    | Grenada Stream tributary       | C5         | I         | 1752842         | 5435969          |
| Urban      | HAR     | Harbourview Stream             | C5         | I         | 1759769         | 5436833          |
| Urban      | ITI     | Wainuiomataiti Stream          | C5         | I         | 1765444         | 5434549          |
| Urban      | ITI1    | Wainuiomataiti tributary       | C5         | I         | 1765423         | 5434879          |
| Urban      | K1      | Kaiwharawhara Stream lower     | C5         | I         | 1749760         | 5430934          |
| Urban      | K2      | Kaiwharawhara Stream lower     | C5         | I         | 1748466         | 5431045          |
| Urban      | K3      | Kaiwharawhara Stream mid       | C5         | I         | 1747040         | 5430167          |
| Urban      | K4      | Kaiwharawhara Stream mid       | C5         | I         | 1746779         | 5429553          |
| Urban      | K5      | Kaiwharawhara Stream upper     | C5         | I         | 1746821         | 5427625          |
| Urban      | K6      | Kaiwharawhara Stream upper     | C5         | R         | 1745694         | 5426213          |
| Urban      | KAR1    | Karori Stream upper            | C5         | I         | 1744865         | 5428053          |
| Urban      | KAR2    | Karori Stream upper            | C5         | I         | 1744377         | 5427937          |
| Urban      | KAR3    | Karori Stream mid              | C5         | I         | 1744080         | 5426291          |
| Urban      | KEN     | Kenepuru tributary             | А          | I         | 1757493         | 5444727          |
| Urban      | Ken1    | Kenepuru Stream                | А          | I         | 1755231         | 5444592          |
| Urban      | Ken2    | Kenepuru Stream                | А          | I         | 1756020         | 5444758          |
| Urban      | KM1     | Korimako Stream                | C5         | I         | 1747418         | 5431713          |
| Urban      | KOR1    | Korokoro Stream upper          | C5         | I         | 1758570         | 5439525          |
| Urban      | KOR2    | Korokoro Stream lower          | C5         | I         | 1755985         | 5435261          |
| Urban      | KOR3    | Korokoro Stream lower          | C5         | I         | 1756005         | 5434797          |
| Urban      | KSW     | Kakariki Stream                | А          | I         | 1774082         | 5474085          |
| Urban      | KT1     | Kaiwharawhara (upper) tributar | C1         |           | 1749765         | 5433139          |
| Urban      | Mit1    | Mitchell Stream                | C5         | I         | 1753381         | 5443363          |
| Urban      | Mit2    | Mitchell Stream                | C5         |           | 1754406         | 5443133          |
| Urban      | MSO     | Mangapouri Stream              | A          |           | 1780683         | 5487186          |
| Urban      | N1      | Ngauranga Stream upper         | C5         |           | 1751333         | 5433178          |
| Urban      | N2      | Ngauranga Stream lower         | C5         | 1         | 1751928         | 5432706          |
| Urban      | OWH1    | Owhiro Stream upper            | C5         |           | 1747426         | 5424948          |
| Urban      | OWH2    | Owhiro Stream lower            | C5         |           | 1747254         | 5421631          |
| Urban      | P1      | Porirua Stream lower           | A          |           | 1754686         | 5444669          |
| Urban      | P1A     | Porirua Stream lower           | A          |           | 1754343         | 5443058          |
| Urban      | P3      | Porirua Stream mid             | A          |           | 1753371         | 5441490          |
| Urban      | P4      | Porirua Stream mid             | C5         |           | 1753329         | 5440795          |
| Urban      | P5      | Porirua Stream upper           | A          |           | 1753283         | 5438304          |
| Urban      | P6      | Porirua Stream upper           | A          |           | 1751927         | 5436311          |
| Urban      | PHU     | Pinehaven Stream               | C5         | 1         | 1768850         | 5440493          |
| Urban      | SC      | Skerrets Creek                 | C7         | R         | 1765018         | 5428658          |
| Urban      | SP1     | Speedys Stream                 | C5         |           | 1761585         | 5438451          |
| Urban      | SSL     | Silverstream lower             | CS         |           | 1761363         | 5442885          |
| Urban      | SSU     | Silverstream upper             | A          |           | 1770379         | 5443085          |
| Urban      | SVL     |                                | A          | 1         |                 |                  |
|            |         | Stokes Valley Stream lower     | C5         |           | 1766486         | 5441257          |
| Urban      | SVU     | Stokes Valley Stream upper     |            | •         | 1766585         | 5437728          |
| Urban      | TCP     | Tikotu Creek                   | A          |           | 1767782         | 5471185          |
| Urban      | TIR     | Tirohanga Stream at Avonlea St | C5         |           | 1760068         | 5437736          |
| Urban      | Train1  | Kaiwharawhara (mid) tributary  | A          |           | 1748841         | 5432330          |
| Urban      | W1      | Waiwhetu Stream lower          | A          | <br>      | 1760498         | 5433574          |
| Urban      | W2      | Waiwhetu Stream lower          | A          | I         | 1760595         | 5433936          |

| Project ID | Site ID | Site name                              | FENZ class | Site type | NZTM<br>Easting | NZTM<br>Northing |
|------------|---------|----------------------------------------|------------|-----------|-----------------|------------------|
| Urban      | W3      | Waiwhetu Stream lower                  | A          | I         | 1760894         | 5434252          |
| Urban      | W4      | Waiwhetu Stream mid                    | A          | 1         | 1761128         | 5434708          |
| Urban      | W5      | Waiwhetu Stream mid                    | A          | I         | 1762207         | 5435729          |
| Urban      | W6      | Waiwhetu Stream upper                  | A          | I         | 1762833         | 5436559          |
| Urban      | W7      | Waiwhetu Stream upper                  | A          | I         | 1763208         | 5436560          |
| Urban      | W8      | Waiwhetu Stream upper                  | C5         | I         | 1764826         | 5436898          |
| Urban      | WS      | Wainuiomata River                      | C7         | R         | 1766141         | 5429278          |
| Urban      | WPB     | Waimapehi Stream                       | C1         | I         | 1758859         | 5456242          |
| Urban      | WSP     | Wharemauku Stream                      | A          |           | 1767190         | 5468775          |
| Urban      | MK1     | Makoura Stream 1                       | A          |           | 1823240         | 5464139          |
| Urban      | MK2     | Makoura Stream 2                       | A          | 1         | 1824123         | 5461918          |
| Urban      | MK3     | Makoura Stream 3                       | A          | I         | 1825008         | 5460730          |
| Urban      | KP1     | Kuripuni Stream 1                      | A          | 1         | 1822000         | 5463038          |
| Urban      | KP2     | Kuripuni Stream 2                      | A          | 1         | 1823054         | 5462416          |
| Urban      | KP3     | Kuripuni Stream 3                      | А          | I         | 1823840         | 5460843          |
| Urban      | LH1     | Landsdown Stream 1                     | A          | I         | 1824982         | 5464854          |
| Urban      | LH2     | Landsdown Stream 2                     | А          | I         | 1825057         | 5463897          |
| Urban      | T1      | Tilson Creek                           | A          | I         | 1807414         | 5449128          |
| Urban      | PW1     | Papawai Stream 1                       | A          | I         | 1805143         | 5449966          |
| Urban      | PW2     | Papawai Stream 2                       | A          | I         | 1806428         | 5449100          |
| Urban      | PW3     | Papawai Stream 3                       | А          | I         | 1807236         | 5448034          |
| Urban      | B1      | Boat Creek                             | C6c        | I         | 1795944         | 5445303          |
| Urban      | A1      | Abbots Creek                           | C7         | R         | 1793127         | 5447007          |
| Massey     | Well1   | Waitohu                                | C7         | R         | 1788483         | 5482785          |
| Massey     | Well2   | Waitohu                                | C6a        | I         | 1782983         | 5486386          |
| Massey     | Well3   | Otaki River                            | C7         | I         | 1785661         | 5479806          |
| Massey     | Well4   | Otaki River                            | C7         | R         | 1786182         | 5470184          |
| Massey     | Well5   | Otaki River                            | C7         | R         | 1791160         | 5475009          |
| Massey     | Well6   | Tauwera River                          | C5         | I         | 1846643         | 5475529          |
| Massey     | Well7   | Wainuiomapu Stream/Tauweru River       | C8         | I         | 1842192         | 5476280          |
| Massey     | Well8   | Tauweru River/Raumahanga R             | C8         | I         | 1840991         | 5472779          |
| Massey     | Well12  | Mangaterere/Waipoua River/Raumahanga R | C7         | R         | 1805423         | 5459281          |
| Massey     | Well13  | Raumahanga R                           | UR         | R         | 1800683         | 5460982          |
| Massey     | Well15  | Waiohine/Raumahanga R                  | C7         | R         | 1809885         | 5473383          |
| Massey     | Well16  | Otaki River                            | C7         | R         | 1788083         | 5473884          |
| Massey     | Well17  | Karori                                 | C5         | I         | 1740979         | 5425189          |
| Massey     | Well18  | South Makara/Karori                    | C5         | I         | 1740679         | 5425789          |
| Massey     | Well19  | South Makara/Karori                    | C5         | I         | 1742978         | 5425689          |
| Massey     | Well20  | Oteranga Stream                        | C5         | I         | 1737279         | 5427989          |
| Massey     | Well21  | Oteranga Stream                        | C5         | I         | 1736979         | 5428289          |
| Massey     | Well22  | Puatahanui Stream                      | C5         | I         | 1764680         | 5447185          |
| Massey     | Well23  | Te Oneopoto Bay                        | A          | I         | 1755580         | 5447886          |
| Massey     | Well24  | Akatarawa/Hutt                         | C8         | R         | 1775445         | 5453084          |
| Massey     | Well25  | Waikanae                               | C5         | R         | 1780082         | 5473785          |
| Massey     | Well26  | Waikanae                               | C5         | I         | 1769481         | 5462485          |
| Massey     | Well27  | Hutt/Akatarawa/Whakaitikei             | C7         | R         | 1770281         | 5456985          |
| Massey     | Well28  | Wareroa stream                         | A          | I         | 1766231         | 5464368          |
| Massey     | Well29  | Wainui Steam                           | C5         | I         | 1765381         | 5459985          |
| Massey     | Well30  | Taupo Stream                           | C5         | I         | 1757481         | 5453086          |
| Massey     | Well31  | Tauherenikau River                     | C7         | R         | 1789280         | 5450983          |
| Massey     | Well32  | Pakuratahi/Hutt                        | C7         |           | 1785680         | 5450283          |
| Massey     | Well33  | Whakatikei/Hutt                        | C5         | R         | 1771005         | 5450238          |
| Massey     | Well34  | Mangaroa/Hutt                          | C7         |           | 1778079         | 5442784          |
| Massey     | Well35  | Tauherenikau River                     | C7         | R         | 1797681         | 5452282          |
| Massey     | Well36  | Orongorongo                            | C7         | R         | 1770957         | 5426105          |
| Massey     | Well37  | Orongorongo                            | C7         | R         | 1770077         | 5426085          |
| Massey     | Well38  | Orongorongo                            | C7         | R         | 1772377         | 5431185          |

| Project ID | Site ID | Site name                      | FENZ class | Site type | NZTM<br>Easting | NZTM<br>Northing |
|------------|---------|--------------------------------|------------|-----------|-----------------|------------------|
| Massey     | Well39  | Lake Wairarapa                 | C7         | R         | 1790980         | 5446782          |
| Massey     | Well40  | Lake Wairarapa                 | C7         | R         | 1778177         | 5431221          |
| Massey     | Well41  | Ngakauau Stream                | C5         | I         | 1866198         | 5465972          |
| Massey     | Well42  | Whareama River                 | C8         | I         | 1866600         | 5476176          |
| Massey     | Well43  | Whakataki River                | C5         | 1         | 1869400         | 5471173          |
| Massey     | Well44  | Castlepoint Stream             | C5         | 1         | 1868399         | 5468573          |
| Massey     | Well45  | Wainuioru River                | C5         | 1         | 1834984         | 5442873          |
| Massey     | Well46  | Pahaoa/Wainuioru               | C5         | 1         | 1837683         | 5436032          |
| Massey     | Well47  | Huatokitoki Stream             | C5         | 1         | 1840981         | 5427769          |
| Massey     | Well48  | Waihingaia Stream              | C5         |           | 1834277         | 5417570          |
| Massey     | Well49  | Kaiwhata River                 | C5         |           | 1843984         | 5436570          |
| Massey     | Well50  | Motuwaireka Stream             | C5         |           | 1855190         | 5449670          |
| Massey     | Well51  | Pounui/Onoke                   | C7         | R         | 1775276         | 5423184          |
| Massey     | Well52  | Pounui/Onoke                   | C6a        |           | 1777775         | 5420984          |
| Massey     | Well53  | Mukamukaiti                    | C1         | 1         | 1765775         | 5415722          |
| Massey     | Well54  | Wharepapa River                | C7         | R         | 1773676         | 5421385          |
| Massey     | Well55  | Wharepapa River                | C7         | R         | 1772686         | 5420811          |
| Massey     |         | Mukamuka Stream                | C7         | R<br>I    |                 |                  |
|            | Well56  |                                |            | -         | 1767775         | 5416986          |
| Massey     | Well57  | Corner reek                    | <u>C1</u>  |           | 1770775         | 5418685          |
| Massey     | Well58  | Otakaha Stream                 | C7         | R         | 1791370         | 5399481          |
| Massey     | Well59  | Otakaha Stream                 | C7         | R         | 1789570         | 5399082          |
| Massey     | Well60  | Mangatoetoe stream             | C7         | R         | 1789169         | 5394982          |
| Massey     | Well61  | Poley Stream                   | C7         | R         | 1796871         | 5403080          |
| Massey     | Well62  | Whawanui                       | C7         | R         | 1795375         | 5400370          |
| Massey     | Well63  | Oterei -unnamed trib           | C5         | R         | 1816473         | 5409074          |
| Massey     | Well64  | Waikanae River                 | C7         | R         | 1779482         | 5466884          |
| Massey     | Well65  | Hutt River                     | C7         |           | 1775481         | 5463081          |
| Massey     | Well66  | Waikanae/Reikorangi Stream     | C5         |           | 1775181         | 5466185          |
| Massey     | Well67  | Bull/Akatarawa/Hutt            | C7         | R         | 1777781         | 5463584          |
| Massey     | Well68  | Akatarawa/Hutt                 | C7         | 1         | 1778481         | 5458984          |
| Massey     | Well69  | Orongorongo River              | C7         | R         | 1765276         | 5421486          |
| Massey     | Well70  | Catchpool stream               | C7         | 1         | 1761087         | 5420574          |
| Massey     | Well71  | Burlings stream                | C7         | 1         | 1780978         | 5433483          |
| Massey     | Well72  | Motuwaireke River              | C5         | I         | 1851989         | 5450348          |
| Massey     | Well73  | Atiwhakatu/Waingawa/Ruamahanga | C10        | R         | 1806348         | 5470613          |
| Massey     | Well74  | Waingawa/Ruamahanga            | C7         | R         | 1806450         | 5470783          |
| Massey     | Well75  | Wharekauhau stream             | C5         | I         | 1771875         | 5419585          |
| Massey     | Well76  | Bocketts stream                | C7         | R         | 1783678         | 5435883          |
| Massey     | Well77  | Cross Creek                    | C7         | R         | 1785979         | 5440183          |
| Massey     | Well78  | Turanganui River               | C7         | I         | 1789226         | 5411882          |
| Massey     | Well79  | Putangirua Stream              | C5         |           | 1789274         | 5414582          |
| Massey     | Well84  | Ngarara Creek                  | A          | 1         | 1773582         | 5471885          |
| Massey     | Well85  | unnamed trib                   | C7         | R         | 1783279         | 5445283          |
| Massey     | Well86  | Pakuratahi River               | C7         |           | 1783237         | 5445631          |

R = reference, I = impacted.