

Hutt City Emissions Inventory 2021/22

19-Jun-2023

aecom.com

Delivering a better world

Hutt City Emissions Inventory 2021/22

Client: Greater Wellington Regional Council

Co No.: N/A

Prepared by

AECOM New Zealand Limited

Level 19, 171 Featherston Street, Pōneke|Wellington 6011, PO Box 27277, Pōneke|Wellington 6141, New Zealand T +64 4 896 6000 F +64 4 896 6001 www.aecom.com

19-Jun-2023

Job No.: 60699045

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 and ISO45001.

© AECOM New Zealand Limited (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document Hutt City Emissions Inventory 2021/22

Ref 60699045

Date 19-Jun-2023

Prepared by Suzanne Lowe

Reviewed by Adam Swithinbank

Revision History

Rev Revision Date	Revision Date	Details	Authorised	
		Name/Position	Signature	
1	19-June-2023	Final	Anthony Hume Associate Director - Practice Leader Sustainability & Resilience	Alley Ame

Table of Contents

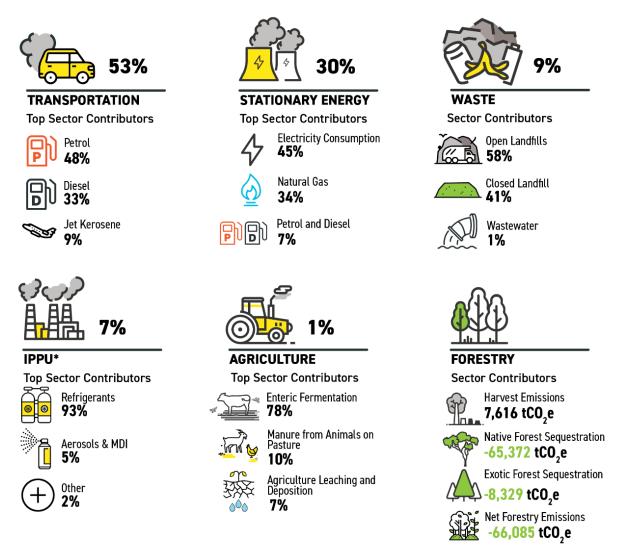
Execut	tive Sumı	mary	1
1.0	Introd	luction	4
2.0	Appro	bach and Limitations	4
3.0	Emiss	sions Inventory for 2021/22	7
	3.1	Transport	8
	3.2	Stationary Energy	9
	3.3	Waste	10
	3.4	Industrial Processes and Product Use (IPPU)	11
	3.5	Agriculture	12
	3.6	Forestry	13
	3.7	Net Emissions	13
	3.8	Territorial Authorities in the Greater Wellington Region	15
	3.9	Total Gross Emissions by Greenhouse Gas	18
	3.10	Biogenic Emissions	18
4.0	Annua	al Emissions Change from 2018/19 to 2021/22	20
	4.1	Transport	22
	4.2	Stationary Energy	23
	4.3	Waste	24
	4.4	Industrial Processes and Product Use (IPPU)	24
	4.5	Agriculture	25
	4.6	Forestry	26
5.0	Annua	al Emissions Change from 2000/01 to 2021/22	27
6.0	Decou	upling of GHG emissions from population growth and GDP	28
7.0		te to the 2018/19 Emissions Inventory	29
8.0		ct of the COVID-19 pandemic on GHG Emissions	30
9.0	Closir	ng Statement	31
10.0	Limita	itions	32
Appen			
	Assur	nptions and Data Sources	A

Executive Summary

Greenhouse Gas (GHG) emissions for the Hutt City City Territorial Area (that is covered by the Hutt City Council) have been measured using the Global Protocol for Community Scale Greenhouse Gas Emissions Inventory (GPC) methodology. This approach includes emissions from Stationary Energy, Transport, Waste, Industrial Processes and Product Use (IPPU), Agriculture and Forestry sectors. This document reports greenhouse gas emissions produced in or resulting from activity or consumption within the geographic boundaries of the Hutt City Territorial Area for the 2021/22 financial reporting year and examines greenhouse gas emissions produced from 2018/19 to 2021/22.

The Hutt City Territorial Area is referred to hereafter as Hutt City for ease. Greenhouse gas emissions are generally reported in this document in units of carbon dioxide equivalents (CO₂e) and are referred to as 'emissions'.

Major findings of the project include:

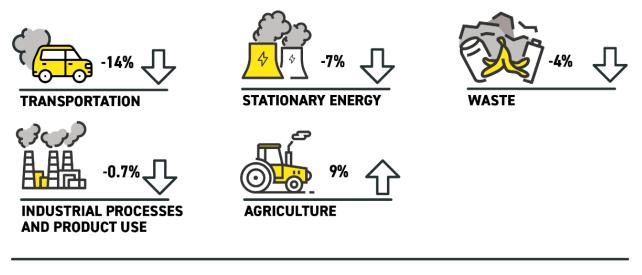

2021/22 Emissions Inventory

- In the 2021/22 reporting year (1st July 2021 to 30th June 2022), Total Gross Emissions in Hutt City were 475,520 tCO₂e.
- **Transport** (e.g., emissions from road and air travel) is the largest emitting sector in Hutt City, representing 53% of total gross emissions, with on-road petrol and diesel use accounting for 40% of Hutt City's total gross emissions.
- **Stationary Energy** (e.g., emissions relating to electricity and natural gas consumption) is the second-highest emitting sector in Hutt City, accounting for 30% of total gross emissions.
- Waste produced 9.3% of Hutt City's total gross emissions. Industrial Processes and Product Use (IPPU) (e.g., refrigerant use) and Agriculture represented 6.5% and 0.7% of Hutt City's total gross emissions respectively.
- Net Forestry emissions were -66,085 in 2021/22 as carbon sequestration (carbon captured and stored in plants or soil by forests) was higher than emissions from forest harvesting (e.g., the release of carbon from timber, roots and organic matter following harvesting). Net Forestry emissions are not included in total gross emissions but in total net emissions.
- **Total Net Emissions** in Hutt City were 409,435 tCO₂e. Total net emissions includes sequestration and emissions release from forestry.

Changes in Annual Emissions, 2018/19 to 2021/22

- Between 2018/19 and 2021/22, Total Gross Emissions in Hutt City decreased from 530,656 tCO₂e to 475,520 tCO₂e, a decrease of 10% (55,136 tCO₂e), largely due to a reduction in transport emissions.
- Over this time the population of the city increased by 2.8%, resulting in **Per Capita Gross Emissions** in Hutt City decreasing by 13% between 2018/19 and 2021/22, from 4.9 to 4.2 tCO₂e per person per year.
- Emissions from **Transport** decreased by 14%, between 2018/19 and 2021/22 (41,701 tCO₂e), driven by a reduction in air travel emissions and on-road petrol and diesel consumption.
- Emissions from **Stationary Energy** decreased by 7% between 2018/19 and 2021/22 (11,484 tCO₂e), due to decreased use of fossil fuel electricity generation in the national grid and a decrease in natural gas and coal use.
- Emissions from Waste decreased by 4% between 2019/20 and 2021/22 (2,016 tCO2e).
- **Total Net Emissions** decreased by 12% (57,423 tCO₂e) between 2018/19 and 2021/22. This was caused by the 55,136 tCO₂e reduction in total gross emissions combined with a 2,288 tCO₂e decrease in emissions released by forest harvesting in these years.

Hutt City Emissions Inventory for 2021/22


Total Gross Emissions (excluding Forestry): 475,520 tCO₂e

Total Net Emissions (including Forestry): 409,435 tCO₂e

*IPPU = Industrial Processes and Product Use

Figure 1: Hutt City 2021/22 Emissions Inventory

Hutt City Emissions Change 2018/19-2021/22

Change in Gross Emissions between 2018/19 and 2021/22: -10%

Figure 2: Change in Hutt City Emissions Inventory between 2018/19 and 2021/22

1.0 Introduction

AECOM New Zealand Limited (AECOM) was commissioned by the Greater Wellington Regional Council to assist in the development of community-scale greenhouse gas (GHG) footprints for the Hutt City Territorial Area for the 2018/19 to 2021/22 financial years. As part of this work, AECOM recalculated emissions for the 2018/19 financial year, previously calculated by AECOM, using current best-practice methods, updated data, and additional emission sources to enable direct comparison to the other reported years.

This is part of a wider study to develop emissions inventories for each district within the Greater Wellington region. Emissions are reported for the financial year period from 1 July to 30 June for the respective years. The study boundary reported in the following pages incorporates the jurisdiction of the Hutt City Council.

The Hutt City Territorial Area is referred to hereafter as Hutt City for ease. Greenhouse gas emissions are generally reported in this document in units of carbon dioxide equivalents (CO₂e) and are referred to as 'emissions'.

2.0 Approach and Limitations

The methodological approach used to calculate emissions follows the Global Protocol for Community Scale Greenhouse Gas Emissions Inventory v1.1 (GPC) published by the World Resources Institute (WRI) 2021. The GPC includes emissions from Stationary Energy, Transport, Waste, Industrial Processes and Product Use (IPPU), Agriculture, and Forestry activities within the district's boundary. The sector calculations for Agriculture, Forestry and Waste are based on Intergovernmental Panel on Climate Change (IPCC) workbooks and guidance for emissions measurement. The sector calculators also use methods consistent with GHG Protocol standards published by the WRI for emissions measurement when needed.

The same methodology has been used for other community-scale GHG footprints around New Zealand, (e.g., the Bay of Plenty region, Hawke's Bay region, Auckland, Christchurch, Dunedin, and the Waikato region) and internationally. The GPC methodology¹ represents international best practice for city and regional level GHG emissions reporting and offers a robust, established method, which enables comparisons between different studies.

This emissions inventory assesses both direct and indirect emissions sources. Direct emissions are production-based and occur within the geographic area (Scope 1 in the GPC reporting framework). Indirect emissions are produced outside the geographic boundary (Scope 2 and 3) but are allocated to the location of consumption. An example of indirect emissions is those associated with the consumption of electricity, which is supplied by the national grid (these are classed as Scope 2). All other indirect emissions such as cross-boundary travel (e.g., flights) and energy transportation and distribution losses fit into Scope 3.

All major assumptions made during data collection and analysis have been detailed within **Appendix A – Assumptions**. The following aspects are worth noting in reviewing the emissions inventory:

- Emissions are calculated by collecting or estimating data for each emissions source and then converting that data into emissions (tCO₂e) using an emission factor. Emission factors enable an estimate of emissions from a unit of activity data (e.g., litres of fuel used)². This inventory uses applicable emission factors predominantly from the New Zealand Ministry of the Environment (MfE).
- Emissions are expressed on a carbon dioxide-equivalent basis (CO₂e) including climate change feedback using the 100-year Global Warming Potential (GWP) values³. Climate change feedbacks are the climate change impacts from GHGs that are increased as the climate changes. For example, once the Earth begins to warm, it triggers other processes on the surface and in the

² https://environment.govt.nz/publications/measuring-emissions-a-guide-for-organisations-2022-quick-guide/

https://aecomaus.sharepoint.com/sites/CCF/Shared Documents/GWRC CCF FY22/3. Reports/GWRC_EmissionsInventory_2022_HuttCity_230619_Final.docx Revision 1 – 19-Jun-2023

¹ <u>http://www.ghgprotocol.org/greenhouse-gas-protocol-accounting-reporting-standard-cities</u>

Prepared for - Greater Wellington Regional Council - Co No.: N/A

atmosphere. Current climate change feedback guidance is important to estimate the long-term impacts of GHGs.

- GPC reporting is predominately production-based (as opposed to consumption-based) and focused on emissions released within the geographic boundary but includes indirect emissions from energy consumption and cross boundary travel from sources such as air travel. Production-based approaches exclude globally produced emissions relating to consumption (e.g., embodied emissions relating to products produced elsewhere but consumed within the geographic area, such as imported food products, cars, phones, clothes etc.).
- Total emissions are reported as both gross emissions (excluding Forestry) and net emissions (including Forestry).
- Emissions for individual main greenhouse gases for each emissions source are provided in the supplementary spreadsheet information supplied with this report.
- Where location specific data were not accessible, information was calculated based on national or regional level data.
- Transport emissions:
 - Transport emissions associated with air travel, rail, and marine fuel were calculated by working out the emissions relating to each journey arriving or departing the area based on data provided by the relevant operators. Emissions for these sources are then split equally between the destination and origin. Emissions relating to a particular point source (e.g., an airport or port) are allocated to the expected users of that source, not just the area that it is located in. For example, in the Greater Wellington region, the Wellington Airport is treated as a regional airport where it is expected that all territorial authorities will use Wellington Airport for air travel. Therefore, emissions from this source have been allocated to all regional territorial authorities based on population. This is also applicable to marine freight and inter-island marine journeys.
 - All other transport emissions are calculated using the fuel sold in the area (e.g., petrol, diesel, LPG). Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is a robust and comparable estimate of fuel consumption in a geographic area.
- Solid waste emissions:
 - Solid waste emissions from landfill are measured using the IPCC First Order Decay method that covers landfill activity between 1950 and the present day, as per the GPC reporting requirements. This method accounts for the gradual release of emissions from waste over a long period of time, and so calculates the emissions produced per year from waste in landfill (including emissions from closed landfill sites).
 - Emissions are calculated for waste produced within the geographic boundary, even if they are transported outside the boundary to be entered into landfill. All of Hutt City's landfill waste is understood to have been disposed at Silverstream Landfill since 2012. Prior to this it was disposed of at Wainuiomata Landfill (opened in 1959 and closed in 2012) and Silverstream Landfill which opened in 1970.
- Wastewater emissions:
 - Wastewater treatment plant emissions have been calculated following WaterNZ (2021) guidance. Wastewater emissions include those released directly from wastewater treatment, flaring of captured gas, and discharge onto land/water. Emissions relating to biosolid waste from wastewater treatment sent to landfill have been included in the solid waste emissions source category.
 - Wastewater emissions from populations not connected to centralised wastewater treatment plants have been estimated by assuming that these populations use septic tank systems.
- Industrial Processes and Product Use (IPPU) emissions:

- IPPU emissions are estimated based on data provided in the New Zealand Greenhouse Gas Emissions 1990-2020 report (MfE 2022). Emissions are estimated on a per capita basis applying a national average per person.
- Forestry emissions:
 - This emissions inventory accounts for forest carbon stock changes from afforestation, reforestation, deforestation, and forest management (i.e., it applies land-use accounting conventions under the United Nations Framework Convention on Climate Change rather than the Kyoto Protocol). It treats emissions from harvesting and deforestation as instantaneous rather than accounting for the longer-term emission flows associated with harvested wood products.
 - The emissions inventory considers regenerating (growing) forest areas only. Capture of carbon from the atmosphere is negligible for mature forests that have reached a steady state.

Overall sector data and results for the emissions inventory have been provided to Hutt City Council in calculation table spreadsheets. All assumptions made during data collection and analysis have been detailed within **Appendix A – Assumptions**.

Uncertainty

It is important to consider the level of uncertainty associated with the results, particularly given the different datasets used. Depending on data availability, national, regional, and local datasets are used across the different calculators. At the national level, New Zealand's Greenhouse Gas Inventory shows that for 2020 (the most recent nationwide inventory) an estimate of gross emissions uncertainty was $\pm 8.8\%$, whereas a net emissions uncertainty estimate was $\pm 26.9\%$ and uncertainty in the gross trend was $\pm 6.4\%$. These levels of uncertainty should be considered when interpreting the results of this emissions inventory (MfE, 2022⁴).

StatsNZ Regional Inventory

Emissions reported using the GPC method (as reported here) differ from the regional emissions estimates produced by StatsNZ. The differences are due to differences in scope, coverage, data sources, emission factors, and methods⁵.

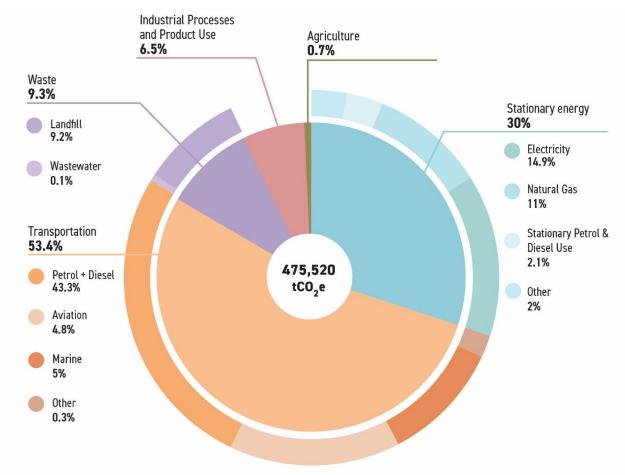
Main differences:

- The StatsNZ approach is entirely based on production, while the GPC approach includes elements of consumption (e.g., where emissions from electricity are allocated to where the electricity is consumed, not where it is generated).
- The StatsNZ method uses a residence approach, while GPC is based on the territory approach.
- This report uses global warming potentials from the IPCC Fifth Assessment Report with climate change feedbacks, while the StatsNZ estimates use those from the Fourth Assessment Report, without climate change feedbacks.
- The StatsNZ estimates also don't include the scope 3 emissions reported here, such as cross boundary air travel and marine freight, or sequestration from forestry.

⁵ https://www.stats.govt.nz/methods/about-regional-greenhouse-gas-emissions-statistics/

https://aecomaus.sharepoint.com/sites/CCF/Shared Documents/GWRC CCF FY22/3. Reports/GWRC_EmissionsInventory_2022_HuttCity_230619_Final.docx

Revision 1 – 19-Jun-2023


⁴ <u>https://environment.govt.nz/assets/publications/GhG-Inventory/New-Zealand-Greenhouse-Gas-Inventory-1990-2020-Chapters-</u> 1-15.pdf

3.0 Emissions Inventory for 2021/22

The paragraphs, figures and tables below outline Hutt City's greenhouse gas emissions, referred to as 'emissions' in this assessment. This includes Hutt City's total emissions, emissions from each sector, and major emissions sources within each sector. The focus of emissions reporting is on gross emissions.

During the 2021/22 reporting period, Hutt City emitted **Total Gross Emissions** of 472,520 tCO₂e. Transport emissions are the city's most significant contributors to total gross emissions. Note that gross emissions do not account for Forestry sequestration and harvesting emissions. A breakdown of net emissions (i.e., including results from Forestry resources) is reported separately in section 3.7.

The population of Hutt City in 2021/22 was approximately 112,350 people, resulting in per capita gross emissions of 4.2 tCO₂e/person. Discussion of per capita emissions is limited to when it is useful for comparing emission figures against other territorial authorities.

Figure 3: Hutt City City's total gross GHG emissions split by sector (tCO₂e).

The emissions inventory comprises emissions from six different sectors, summarised below. Due to rounding, there may be discrepancies between the sum of reported figures and reported totals.

The change in emissions from each emission source between 2018/19 and 2021/22 is presented in section 4.0. This includes analysis of notable changes in emissions.

3.1 Transport

The highest emitting sector in Hutt City, Transport, produced 253,857 tCO₂e in 2021/22 (53% of Hutt City's gross total emissions). Table 1 provides the total emissions, percentage of the total gross emissions, and percentage of the sector total for each sector/emission source. Air travel and marine travel emissions relating to the Wellington Airport and CentrePort have been split between all territorial authority areas in the region (see below).

Sector / Emissions Source	tCO₂e	% of Total Gross Emissions	% of Sector Total
Petrol	121,053	25.5%	47.7%
Diesel	84,896	17.9%	33.4%
Jet Kerosene (Air Travel)	22,676	4.8%	8.9%
Marine Freight	13,506	2.8%	5.3%
Marine (Inter-Island Ferries)	10,180	2.1%	4.0%
LPG	951	0.2%	0.4%
Rail (Electric)	313	0.1%	0.1%
Rail (Diesel)	161	<0.1%	0.1%
Aviation Gas (Air Travel)	120	<0.1%	<0.1%
Total	253,857	53.4%	100.0%

Table 1 Transport energy emissions by emission source

Most of the Transport emissions in 2021/22 can be attributed to petrol and diesel, which produced 121,053 tCO₂e and 84,896 tCO₂e respectively (collectively 81% of the sector's emissions and 43% of total gross emissions). Diesel and petrol transport emissions are broken down into on-road and off-road use. On-road transport consists of all standard road vehicles used on public roads (cars, trucks, buses, etc.). Off-road transport consists of all fuel used for vehicle movement off roads (agricultural tractors and vehicles, forklifts, etc.). On-road transport produced 188,594 tCO₂e in 2021/22 (74% of Transport emissions and 40% of total gross emissions) and off-road transport produced 18,308 tCO₂e (7% of Transport emissions).

Sector / Emissions Source	tCO₂e	% of Total Gross Emissions	% of Sector Total
Petrol - On-Road	119,942	25.2%	47.2%
Diesel - On-Road	68,652	14.4%	27.0%
Diesel - Off-Road	16,245	3.4%	6.4%
Petrol - Off-Road	1,111	0.2%	0.4%
Petrol and Diesel Total	205,950	43.3%	81.1%

The next largest emission source for Hutt City in 2021/22 is jet kerosene (aircraft jet fuel), contributing 9% of the sector's emissions and 5% of total gross emissions (22,676 tCO₂e). Jet kerosene emissions are based on the fuel consumed by aircraft journeys to and from Wellington, with emissions split equally between the origin and destination location. The Wellington Airport has been considered to be a regional airport so emissions from jet kerosene have been split between all territorial authorities in the Greater Wellington Region based on population. It is important to note that jet kerosene emissions for

Hutt City in 2021/22 were 59% lower than in 2018/19, largely due to the restriction on international travel through Wellington Airport due to the COVID-19 pandemic (see section 8.0), it is likely that this will increase in 2022/23.

The remaining Transport emissions are attributed to marine freight, inter-island ferries, rail (both freight and electric commuter trains), aviation gas (used by small aircraft), and LPG use for transport (e.g., forklifts).

Emissions from marine freight have been divided between all territorial authorities in the Greater Wellington region based on relative population sizes. It is understood that imports and exports through this port are not exclusively related to activities in the Greater Wellington region; however, to ensure that these emissions are reflected in community carbon footprints as per the GPC requirements, this approach is appropriate. A similar consideration has been applied to aircraft emissions relating to Wellington Airport and inter-island ferry journeys. All assumptions have been detailed in the appendix.

3.2 Stationary Energy

Producing 142,791 tCO₂e in 2021/22, Stationary Energy was Hutt City's second-highest emitting sector (30% of total gross emissions). Table 3 provides the total emissions, percentage of the total gross emissions, and percentage of the sector total for each sector/emission source.

Emissions Source	tCO ₂ e	% of Total Gross Emissions	% of Sector Total
Electricity Consumption	63,912	13.4%	44.8%
Natural Gas	48,203	10.1%	33.8%
Stationary Petrol & Diesel Use	9,898	2.1%	6.9%
LPG	7,542	1.6%	5.3%
Electricity Transmission & Distribution Losses	6,779	1.4%	4.7%
Natural Gas Transmission & Distribution Losses	3,896	0.8%	2.7%
Biofuel / Wood	1,558	0.3%	1.1%
Coal	1,003	0.2%	0.7%
Total:	142,791	30.0%	100%

 Table 3
 Stationary Energy emissions by emission source

Electricity consumption was the cause of 45% of Stationary Energy emissions in 2021/22 (63,912 tCO₂e) and 13% of Hutt City's total gross emissions (70,691 tCO₂e when including transmission and distribution losses related to the consumption). Electricity consumption emissions depend on the amount of consumption (in kWh), and the emissions intensity of the national grid (tCO2e/kWh). The emissions intensity of the national grid is determined by overall national electricity generation in a particular year (e.g. from fossil fuels or renewable sources). Overall, national electricity generation can fluctuate year on year based on factors such as low rainfall reducing hydropower generation levels, resulting in changes to electricity consumption emissions even when consumption levels haven't changed. This can be seen between 2020/21 and 2021/22 where, despite no significant change in consumption, electricity consumption emissions were 34% higher in 2020/21 than in 2021/22 due to increased use of fossil fuel generation that year caused by reduced hydro generation (see Section 4.2).

Natural gas consumption accounted for 34% of Stationary Energy emissions in 2021/22 (48,203 tCO₂e) and 10% of Hutt City's total gross emissions (52,099 tCO₂e when including transmission and distribution losses related to the consumption).

Stationary petrol and diesel use generated 7% of Stationary Energy emissions in 2021/22 (9,898 tCO₂e). The burning of petrol and diesel, coal, biofuels, and landfill biogas used for energy generation, produced the remaining Stationary Energy emissions.

Biogenic CO₂ emissions from biofuels have not been included in these totals and are reported separately in section 3.10.

Stationary Energy emissions can also be broken down by their end-use sector; residential, commercial, or industrial, based on high-level estimates. In Hutt City, 51% of Stationary Energy emissions are from industrial uses, with 24% from residential uses, and 18% from commercial uses. Within industrial uses, 51% are from natural gas, with 36% from electricity. Within residential uses, 64% is from electricity with 15% from natural gas.

3.3 Waste

Waste originating in Hutt City (solid waste and wastewater) produced 44,433 tCO₂e in 2021/22. Table 4 provides the total emissions, percentage of the total gross emissions, and percentage of the sector total for each sector/emission source.

Sector / Emissions Source	tCO ₂ e	% of Total Gross Emissions	% of Sector Total
Open Landfill Sites	25,764	5.4%	58.0%
Closed Landfill Sites	18,166	3.8%	40.9%
Wastewater Treatment Plants	367	0.1%	0.8%
Individual Septic Tanks	135	<0.1%	0.3%
Total:	44,433	9.3%	100%

 Table 4
 Waste emissions by emission source

Landfill waste produced the bulk of waste emissions (43,930 tCO₂e in 2021/22), making up 99% of total waste emissions. Solid waste emissions include emissions from open (operating) landfill sites and closed landfill sites. Open landfill sites produced 25,764 tCO₂e in 2021/22, and closed landfill sites produced 18,166 tCO₂e in 2021/22. Both open and closed landfills emit landfill (methane) gas from the breakdown of organic materials disposed of in the landfill for many years after waste enters the landfill.

Landfill emissions are those that are the result of waste produced in Hutt City and emitted in the reporting year, calculated based on all the waste sent to landfill over time.

Wastewater treatment (treatment plants and individual septic tanks) accounted for 1% of total waste emissions in 2021/22 (503 tCO₂e). The majority of households in Hutt City (99%) are connected to wastewater treatment plants, producing total emissions of 367 tCO₂e in wastewater emissions. It is likely that wastewater treatment plant emissions are higher than reported here, improved data would improve the accuracy of this calculation. Households not connected to centralised wastewater treatment plants (i.e., using individual septic tanks) produced 135 tCO₂e in wastewater emissions.

3.4 Industrial Processes and Product Use (IPPU)

IPPU in Hutt City produced 31,108 tCO₂e in 2021/22, contributing 7% to Hutt City's total gross emissions. This sector includes emissions associated with the consumption of industrial products and synthetic gases containing GHGs for refrigerants, foam blowing, fire extinguishers, aerosols, metered dose inhalers and Sulphur Hexafluoride for electrical insulation and equipment production. No known industrial processes (as defined in the GPC requirements) are present in Hutt City (e.g., aluminum manufacture).

IPPU emissions do not include energy use for industrial manufacturing, which is included in the relevant Stationary Energy sub-category (e.g., coal, electricity and/or petrol and diesel). These emissions are based on nationally reported IPPU emissions and apportioned based on population due to the difficulty of allocating emissions to particular geographic locations. Addressing IPPU emissions is typically a national policy issue.

Table 5 provides the total emissions, percentage of the total gross emissions, and percentage of the sector total for each sector/emission source. The most significant contributor to IPPU emissions is refrigerants, which produced 93% of IPPU emissions (28,942 tCO₂e).

Sector / Emissions Source	tCO ₂ e	% of Total Gross Emissions	% of Sector Total
Refrigerants and Air Conditioning	28,942	6.1%	93.0%
Aerosols	1,613	0.3%	5.2%
SF6 - Electrical Equipment	315	0.1%	1.0%
Foam Blowing	127	<0.1%	0.4%
SF6 - Other	62	<0.1%	0.2%
Fire Extinguishers	50	<0.1%	0.2%
Total	31,108	6.5%	100%

Table 5 Industrial processes and product use emissions by emission source

3.5 Agriculture

Agriculture emitted $3,332 \text{ tCO}_2\text{e}$ in 2021/22 (0.7% of Hutt City's gross emissions). Table 6 provides the total emissions, percentage of the total gross emissions, and percentage of the sector total for each sector/emissions source.

Agricultural emissions are the result of both livestock and crop farming within the geographic area. Enteric fermentation from livestock produced 78% of Hutt City's agricultural emissions (2,597 tCO₂e). Enteric fermentation GHG emissions are produced by methane (CH₄) released from the digestive process of ruminant animals (e.g., cattle and sheep). The second highest source of Agricultural emissions was produced by unmanaged manure from grazing animals on pasture (342 tCO₂e).

Sector / Emissions Source	tCO₂e	% of Total Gross Emissions	% of Sector Total
Enteric Fermentation	2,597	0.5%	77.9%
Unmanaged Manure on Pasture	342	0.1%	10.3%
Agricultural Leaching and Deposition (manure, urine, and fertiliser)	218	<0.1%	6.5%
Managed Manure	170	<0.1%	5.1%
Fertilisers on Land	5	<0.1%	0.2%
Total	3,332	0.7%	100%

 Table 6
 Agriculture emissions by emission source

Livestock was responsible for the majority of the Agriculture sector's GHG emissions. Dairy cattle account for 63% of agricultural emissions in Hutt City, with non-dairy cattle accounting for 38% and 0.1% attributed to other livestock. In 2021/22, there were an estimated 513 dairy cattle in Hutt City and 485 non-dairy cattle. It is noted that sheep numbers were not included in the source data, potentially due to low numbers of sheep and as such this data has not been included in the calculations.

Table 7 Agriculture emissions by emission source

Sector / Emissions Source	tCO₂e	% of Total Gross Emissions	% of Sector Total
Dairy Cattle	2,085	0.4%	62.6%
Non-Dairy Cattle	1,244	0.3%	37.3%
Other Livestock	3	<0.1%	0.1%
Total	3,332	0.7%	100%

3.6 Forestry

Net Forestry emissions include:

- Sequestration of carbon from the atmosphere from native forests (e.g. mānuka and kānuka) and exotic forest (e.g. pine) sequesters (captures) while the trees are growing to maturity and,
- emissions released due to harvesting of forests via the release of carbon from organic matter and soils following harvesting.

When forest sequestration exceeds emissions from harvesting in a particular year, the extra carbon sequestered by forest results in net-negative Forestry emissions. Conversely, when emissions from harvesting exceed the amount of carbon sequestered by native and exotic forests, then Forestry emissions will be a net-positive source of emissions.

Total sequestration in 2021/22 was 73,702 tCO₂e (mostly from native forests), while harvesting emissions were 7,616 tCO₂e. This meant that Forestry in Hutt City was a net negative source of emissions in 2021/22 (rather than a positive source of emissions, where harvesting emissions exceed sequestration). Total Forestry emissions in 2021/22 were therefore -66,085 tCO₂e. It is noted that the harvesting of exotic forests can be cyclical in nature. Some years will have higher sequestration, and some years will have higher harvesting emissions determined by the age of forests, commercial operators, and the global market.

Sector / Emissions Source	tCO ₂ e
Harvest Emissions	7,616
Native Forest Sequestration	-65,372
Exotic Forest Sequestration	-8,329
Total	-66,085

Table 8 Forestry emissions by emission source (including sequestration)

3.7 Net Emissions

Net emissions differ from gross emissions because they include emissions related to forestry activity (harvesting emissions and sequestration). The cyclical nature of harvesting and planting regimes influences the observed forestry emissions, which in 2021/22 were a net-negative source of emissions. However, as there is very little commercial (exotic) forestry in the area, the level of net Forestry sequestration is likely to remain relatively stable as native forest sequestration is unlikely to change much over the short and medium term. During the 2021/22 reporting period, Hutt City emitted total net emissions of 409,435 tCO₂e.

Figure 4 shows total gross emissions and total net emissions in 2021/22, and the impact of forestry sequestration and harvesting.

14

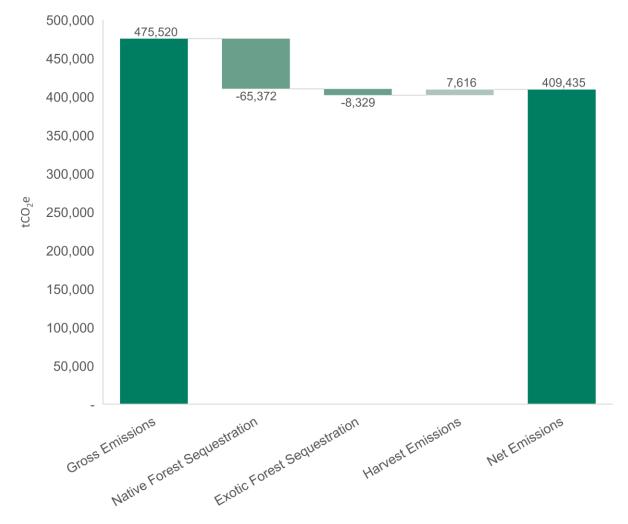


Figure 4 Total gross emissions and total net emissions in 2021/22, showing the impact of forestry sequestration and harvesting

3.8 Territorial Authorities in the Greater Wellington Region

The Greater Wellington regional area contains several territorial authorities including Wellington City Council, Porirua City Council, Kāpiti Coast District Council, Hutt City Council, Upper Hutt City Council, Masterton District Council, Carterton District Council, and South Wairarapa District Council.

Figure 5 shows the Greater Wellington Region total gross emissions divided by territorial authority. Figure 6 shows total gross emissions for the territorial authorities in the Greater Wellington Region, split by sector.

Wellington City is the highest emitting territorial authority in the region, representing 23% of Greater Wellington's total gross emissions. Wellington City's emissions inventory is predominantly transport-related emissions with the next largest emitting territorial authorities; Masterton and South Wairarapa containing significant agricultural emissions. Of the eight territorial authorities within the Greater Wellington region, Upper Hutt has the lowest total gross emissions, with emissions mostly from Transport and Stationary Energy. Hutt City has the fourth highest total gross emissions, with emissions also mostly from Transport and Stationary Energy.

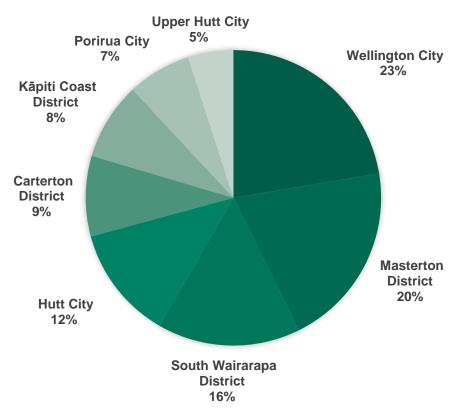


Figure 5 Greater Wellington's total gross emissions divided by territorial authority (tCO2e).

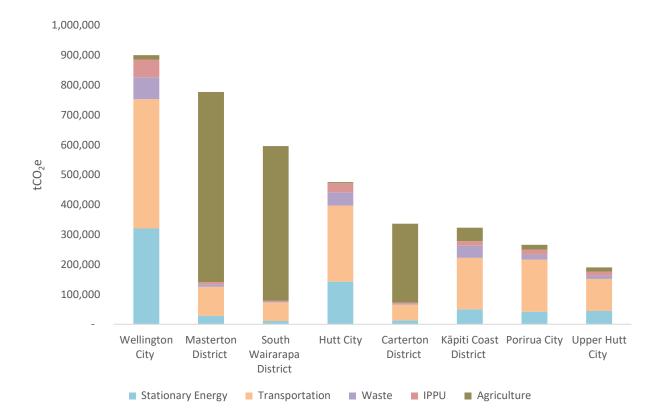


Figure 6 Total gross emissions by territorial authority in the Greater Wellington region (tCO₂e).

When comparing emissions inventories from different areas, a per capita figure can be useful because it provides a common reference point to understand the difference in emissions. Figure 7 shows emissions per capita for the territorial authorities within the Greater Wellington Region.

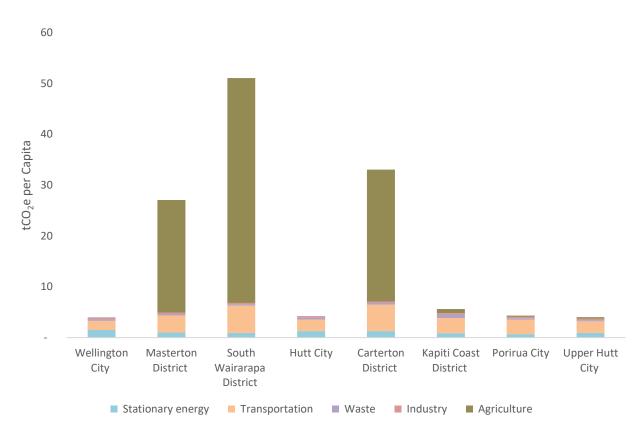


Figure 7 Total gross emissions per capita for the territorial authorities within the Greater Wellington Region (tCO₂e).

The Greater Wellington region has a 7.1 tCO₂e/per capita figure for total gross emissions which is lower than the national value of 15.7 tCO₂e/per capita. Upper Hutt has the lowest per capita total emissions at 4.0 tCO₂e/per capita. South Wairarapa and Carterton have the largest per capita total gross emissions at 51.4 tCO₂e/per capita and 33.3 tCO₂e/per capita respectively, both due to high Agriculture emissions in the district. Masterton has the third highest per capita emissions at 27.4 tCO₂e/per capita, again due to Agriculture emissions in the district. South Wairarapa, Carterton and Masterton also have the highest per capita transport emissions in the region (5.3 tCO₂e/per capita, 5.2 tCO₂e/per capita and 3.4 tCO₂e/per capita, respectively). Wellington City has the highest Stationary Energy emissions per capita in the region (1.5 tCO₂e/per capita).

Hutt City has 4.2 tCO₂e/per capita for total gross emissions in 2021/22, similar to that of Wellington City and Upper Hutt. Hutt City has the lowest Agriculture per capita emissions in the Region, at 0.03 tCO₂e/per capita.

3.9 Total Gross Emissions by Greenhouse Gas

Each greenhouse gas has a different level of impact on climate change, this is accounted for when converting quantities of each gas into units of carbon dioxide equivalent (CO₂e).

 Table 9: Hutt City total gross emissions, by greenhouse gas

Greenhouse Gas	Tonnes	Tonnes of CO₂e
Carbon Dioxide (CO ₂)	378,248	378,248
Biogenic Methane (CH ₄)	1,406	47,808
Non-biogenic Methane (CH ₄)	310	10,549
Nitrous Oxide (N ₂ O)	28	8,256
Other / Unknown Gas (in CO2e)	30,659	30,659
Total	410,652	475,520

By far the largest source of emissions in tonnes is carbon dioxide (CO₂) at 378,248 tonnes. Due to the greater global warming impact of methane per tonne, methane represents 0.4% of the total tonnage of GHG emissions from Hutt City but represents 12% of CO₂e. Nitrous oxide represents 0.01% of the total tonnage of GHG emissions from Hutt City but represents 2% of CO₂e.

3.10 Biogenic Emissions

Biogenic carbon dioxide and methane emissions are stated in Table 10 and Table 11, respectively.

Biogenic CO_2 emissions result from the combustion of biomass materials that store and sequester CO_2 , including materials used to make biofuels (e.g., trees, crops, vegetable oils, or animal fats). Biogenic CO_2 emissions from plants and animals are excluded from gross and net emissions as they are considered to be part of the natural carbon cycle.

Table 10: Biogenic CO₂ in Hutt City (Excluded from gross emissions)

Biogenic Carbon Dioxide (CO ₂) (Excluded from gross emissions)			
Biofuel	15,929	t CO ₂	
Landfill Gas	16,817	t CO ₂	
Total Biogenic CO ₂	32,746	t CO ₂	

Biogenic CH₄ emissions (e.g., produced by farmed cattle via enteric fermentation) are included in gross emissions due to their relatively large impact on global warming relative to biogenic CO₂. Biogenic methane represents 0.3% of the gross total tonnage of GHG emissions in Hutt City but represents 10% of total gross GHG emissions when expressed in CO₂e. This is caused by the higher global warming impact of methane per tonne, compared to carbon dioxide. The total tonnage of each GHG and the contribution of each GHG to total gross emissions when expressed in CO₂e is shown in Table 9.

The importance of biogenic CH₄ is highlighted in NZ's Climate Change Response (Zero Carbon) Amendment Act. The Act includes specific targets to reduce biogenic CH₄ by between 24% and 47% below 2017 levels by 2050, and by 10% below 2017 levels by 2030. More information on the Act is available here: <u>https://www.mfe.govt.nz/climate-change/zero-carbon-amendment-act</u>.

Biogenic Methane (CH₄) (Included in gross emissions) Landfill Gas 1,289 t CH₄ Enteric Fermentation (Livestock) $t \ CH_4$ 76 Biofuel t CH4 21 Wastewater Treatment 15 $t \; CH_4$ Manure Management (Livestock) 5 t CH4 **Total Biogenic CH₄** 1,406 t CH₄

Table 11: Biogenic Methane in Hutt City (Included in gross emissions)


4.0 Annual Emissions Change from 2018/19 to 2021/22

Alongside calculating Hutt City's emissions inventory for 2021/22, Hutt City's emissions inventory for 2019/20 and 2020/21 has been calculated, and the previously published 2018/19 inventory has been recalculated. The 2018/19 inventory has been updated to account for updates in data and calculation best-practice and to align with the other reporting years. This section displays the results of the 2018/19, 2019/20, 2020/21 and 2021/22 emissions inventories with a focus on gross emissions and documents the change in emissions from 2018/19 to 2021/22.

An analysis of the impact of the COVID-19 pandemic on Hutt City's emissions is found in Section 7.0. This section is cautious in examining the interpretation of changes, due to the inventory only assessing one financial year (2018/19) prior to the COVID-19 pandemic disruptions. See section 5.0 for an examination of long-term emissions trends in Hutt City.

	2018/19 (tCO ₂ e)	2019/20 (tCO ₂ e)	2020/21 (tCO ₂ e)	2021/22 (tCO ₂ e)	% Change (2018/19 to 2021/22)
Total Net Emissions (including Forestry)	446,859	423,695	463,756	409,435	-12%
Total Gross Emissions (excluding Forestry)	530,656	489,108	529,841	475,520	-10%

Table 12 Change in Hutt City total gross and net emissions from 2018/19 to 2021/22

Figure 8 Change in Hutt City total gross emissions from 2018/19 to 2021/22

Annual total gross emissions decreased by 10% from 530,656 tCO₂e in 2018/19 to 475,520 tCO₂e in 2021/22. Annual total net emissions in Hutt City decreased by 12% from 466,859 in 2018/19 to 409,435 tCO₂e. The decrease in both gross and net emissions was driven by a reduction in Transport emissions primarily related to air travel and on-road fuel use. The impact of COVID-19 pandemic restrictions can

be especially seen in air travel emissions where emissions were 59% lower in 2021/22 compared to 2018/19.

The population of Hutt City remained steady between 2018/19 and 2021/22 (increasing by 2.8%). Owing to the decrease in total gross emissions, per capita emissions between 2018/19 and 2021/22 decreased from 4.9 to 4.2 tCO₂e per person per year. A discussion of the decoupling of gross emissions from population growth and GDP is found in Section 5.0.

The sections below outline the change in emissions between 2018/19 and 2021/22 for each sector and emissions source, highlighting the changes that have had the largest impact on total gross emissions. Due to rounding, there may be discrepancies between the sum of reported figures and reported totals.

Figure 9 Emissions for each sector of Hutt City gross emissions inventory for 2018/19 and 2021/22

4.1 Transport

 Table 13
 Change in Hutt City Transport emissions from 2018/19 to 2021/22

Sector / Emissions Source	2018/19 (tCO ₂ e)	2019/20 (tCO ₂ e)	2020/21 tCO ₂ e)	2021/22 (tCO ₂ e)	% Change (2018/19 to 2021/22)
Petrol	125,271	109,296	132,688	121,053	-3%
Diesel	85,486	77,138	90,803	84,896	-1%
Jet Kerosene (Air Travel)	55,252	40,752	15,087	22,676	-59%
Marine Freight	14,658	11,030	12,462	13,506	-8%
Marine (Inter- Island Ferries)	13,463	13,620	13,902	10,180	-24%
LPG	918	924	959	951	4%
Rail (Electric)	384	392	528	313	-19%
Aviation Gas (Air Travel)	120	120	120	120	0%
Rail Diesel	6	105	161	161	2,456%
Total	295,558	253,374	266,710	253,857	-14%

Transport emissions decreased by 14% between 2018/19 and 2021/22 (41,701 tCO₂e). This was driven by a 32,576 tCO₂e decrease in Jet Kerosene (aircraft fuel) emissions, a 4,655 tCO₂e reduction in onroad fuel use emissions and a 4,435 tCO₂e reduction in marine emissions.

Jet Kerosene emissions decreased by 59% due to a reduction in flights, especially of international flights, with international passenger numbers down 91% and domestic passenger numbers down 39% between 2019/20 and 2021/22⁶. This is likely the impact of COVID-19-related restrictions on travel and the slow pace of recovery of the aviation industry. It is expected that emissions from this source will increase in 2022/23.

On-road fuel use emissions (petrol and diesel) decreased by 2%, with an 3% decrease in on-road petrol emissions. This is partly due to the impacts of COVID-19 with restrictions on travel in both 2019/20 and 2021/22 in Greater Wellington. Improvements in the efficiency of private, commercial, and public transport vehicles may have also contributed to this decrease.

Emissions related to the inter-island ferries decreased by 24% between 2018/19 and 2021/22 (3,283 tCO₂e), this is due to a change in fuel use for some journeys by one of the operators of this service, from heavy fuel oil to diesel, which has a lower emissions impact.

Marine freight emissions decreased by 8% between 2018/19 and 2021/22 (1,152 tCO₂e). It is, however, important to note that maritime freight emissions for Wellington tend to fluctuate year-to-year based on distance travelled by vessels, size of vessels, and the number of visits in a particular year (for example, emissions from marine freight in 2021/22 are 18% higher than in 2019/20).

It is unclear why rail diesel emissions were so low in 2018/19, leading to a large percentage increase during this period; possible reasons could be maintenance to the track or rail stops, or disruption to freight volumes or movements in that year.

22

⁶ <u>https://www.wellingtonairport.co.nz/business/investor-services/traffic-reports/</u> https://aecomaus.sharepoint.com/sites/CCF/Shared Documents/GWRC CCF FY22/3. Reports/GWRC_EmissionsInventory_2022_HuttCity_230619_Final.docx Revision 1 – 19-Jun-2023 Prepared for – Greater Wellington Regional Council – Co No.: N/A

4.2 Stationary Energy

Table 14 Change in Hutt City's Stationary Energy emissions from 2018/19 to 2021/22

Sector / Emissions Source	2018/19 (tCO ₂ e)	2019/20 (tCO ₂ e)	2020/21 (tCO ₂ e)	2021/22 (tCO ₂ e)	% Change (2018/19 to 2021/22)
Electricity Consumption	70,866	72,341	96,116	63,912	-10%
Natural Gas	52,400	52,400	51,781	48,203	-8%
Stationary Petrol & Diesel Use	9,991	8,988	10,610	9,898	-1%
LPG	7,281	7,323	7,604	7,542	4%
Electricity Transmission and Distribution Losses	6,190	6,326	8,936	6,779	10%
Natural Gas Transmission and Distribution Losses	4,236	4,236	4,186	3,896	-8%
Coal	1,741	2,166	1,048	1,003	-42%
Biofuel / Wood	1,571	1,564	1,558	1,558	-1%
Total:	154,275	155,345	181,838	142,791	-7%

Emissions from Stationary Energy decreased by 7% between 2018/19 and 2021/22 (11,484 tCO₂e).

This was driven by a decrease in electricity consumption emissions due to changes in the emissions intensity of the national grid and a decrease in natural gas consumption.

Electricity consumption in Hutt City (in kWh) increased by 3% between 2018/19 and 2021/22. However, emissions from this source decreased by 10% due to a decrease in the emissions intensity of the national electricity grid (tCO₂e/kWh). The emissions intensity of the national grid decreased due to a reduction in coal and gas generation as renewable generation sources made up a greater proportion of national generation (especially hydropower). It is important to note that the emissions intensity of New Zealand's national grid fluctuates year on year, primarily driven by water levels in the hydropower system (as can be seen in the increase in emissions from 2019/20 to 2020/21 and subsequent decrease again in 2021/22).

Natural gas consumption decreased by 8% (4,197 tCO₂e), stationary petrol and diesel use decreased by 1% (93 tCO₂e) between 2018/19 and 2021/22, and coal use, which reduced by 42% (738 tCO₂e). The decrease in coal use represents transitions away from coal use for energy to lower emission options.

Stationary Energy emissions can also be broken down by their end-use sector; residential, commercial, or industrial based on high-level estimates. In Hutt City, 51% of Stationary Energy emissions are from industrial uses, with 24% from residential uses, and 18% from commercial uses. Industrial uses have decreased by 10%, driven by a decrease in natural gas and electricity consumption. Residential uses have decreased by 2% due to a decrease in electricity consumption partially offset by an increase in residential natural gas use.

4.3 Waste

Table 15	Change in Hutt City	Waste emissions	from 2018/19 to 2021/22
	onange in nutt oity	music cimissions	

Sector / Emissions Source	2018/19 (tCO₂e)	2019/20 (tCO ₂ e)	2020/21 (tCO ₂ e)	2021/22 (tCO ₂ e)	% Change (2018/19 to 2021/22)
Open Landfill Sites	23,715	24,367	27,022	25,764	9%
Closed Landfill Sites	22,319	20,800	19,421	18,166	-19%
Wastewater Treatment Plants	283	371	274	367	30%
Individual Septic Tanks	132	134	135	135	3%
Total	46,448	45,671	46,852	44,433	-4%

Total Waste emissions reduced by 4% between 2018/19 and 2021/22 (2,016 tCO₂e).

At the open landfill sites that process Hutt City's waste, the total landfill emissions increased by 9% between 2018/19 and 2021/22.

Emissions from closed landfill sites reduced by 19% between 2018/19 and 2021/22. As no additional waste enters these sites, annual emissions from this source will continue to fall over time.

Emissions from Individual Septic Tanks are determined based on an estimate of the population of Hutt City not connected to centralised wastewater treatment plants. Emissions from this source increased by 3% due to an increase in the estimate of the population not connected to centralised wastewater treatment, in line with population growth.

Wastewater treatment plant emissions increased by 30% between 2018/19 and 2021/22 (84 tCO₂e). It is likely that wastewater treatment plant emissions are higher than reported here, improved data would improve the accuracy of this calculation.

4.4 Industrial Processes and Product Use (IPPU)

 Table 16
 Change in Hutt City IPPU emissions from 2018/19 to 2021/22

Sector / Emissions Source	2018/19 (tCO ₂ e)	2019/20 (tCO ₂ e)	2020/21 (tCO ₂ e)	2021/22 (tCO ₂ e)	% Change (2018/19 to 2021/22)
Refrigerants and Air Conditioning	28,978	28,982	28,943	28,942	-0.1%
Aerosols	1,824	1,692	1,613	1,613	-12%
SF6 - Electrical Equipment	287	309	315	315	10%
Foam Blowing	127	132	127	127	-0.5%
SF6 - Other	62	62	62	62	-1%
Fire Extinguishers	51	50	50	50	-2%
Total	31,330	31,226	31,109	31,108	-1%

https://aecomaus.sharepoint.com/sites/CCF/Shared Documents/GWRC CCF FY22/3. Reports/GWRC_EmissionsInventory_2022_HuttCity_230619_Final.docx Revision 1 – 19-Jun-2023 Prepared for – Greater Wellington Regional Council – Co No.: N/A IPPU emissions remained relatively unchanged between 2018/19 and 2021/22. The only notable change is a decrease in aerosol emissions which may be due to a decrease in the quantity used or an increase in the use of lower emissions-impacting aerosols. Note that national-level data is used for this sector and is portioned out using a population approach; actual emissions for the city are unknown.

4.5 Agriculture

Sector / Emissions Source	2018/19 (tCO ₂ e)	2019/20 (tCO ₂ e)	2020/21 (tCO ₂ e)	2021/22 (tCO ₂ e)	% Change (2018/19 to 2021/22)
Livestock Enteric Fermentation	2,375	2,717	2,597	2,597	9%
Unmanaged Manure on Pasture	313	357	342	342	9%
Agricultural Leaching and Deposition (Manure, Urine, and Fertiliser)	199	228	218	218	9%
Managed Manure	154	183	170	170	11%
Fertilisers on Land	5	6	5	5	13%
Total	3,045	3,491	3,332	3,332	9%

The Agriculture sector's emissions increased by 9% between 2018/19 and 2021/22 (287 tCO₂e). This increase is driven by an increase in total livestock numbers (cattle).

Dairy cattle represent 51% of total livestock in Hutt City in 2021/22 and 63% of agricultural emissions. Emissions related to dairy cattle increased by 13% (238 tCO₂e) due to an 12% increase in the number of dairy cattle (from 459 cattle to 513 cattle).

Non-dairy cattle represent 48% of total livestock in Hutt City in 2021/22 and 37% of agricultural emissions. Emissions related to non-dairy cattle increased by 4% (49 tCO₂e) due to a 2% increase in the number of non-dairy cattle (from 474 cattle to 485 cattle).

The number of sheep in Hutt City was not included in the source data, potentially due to low numbers of sheep and as such this data has not been included in the calculations. It is likely that sheep numbers have decreased in this period following the regional and national trend. Sheep have a smaller emissions impact than cattle.

4.6 Forestry

Table 18 Change in	Hutt City Forestry	emissions from 201	8/19 to 2021/22		
Sector / Emissions Source	2018/19 (tCO ₂ e)	2019/20 (tCO ₂ e)	2020/21 (tCO ₂ e)	2021/22 (tCO ₂ e)	% Cha (2018/1 2021/2
Total Harvest Emissions	10,920	8,351	7,616	7,616	
Native Forest Sequestration	-65,372	-65,372	-65,372	-65,372	
Exotic Forest Sequestration	-9,345	-8,392	-8,329	-8,329	
Total	-63,798	-65,413	-66,085	-66,085	

Table 18 Change in Hutt City Forestry emissions from 2018/19 to 2021/22

Net Forestry sequestration (emissions released minus sequestration) increased by 2,288 tCO₂e between 2018/19 and 2021/22, from -63,798 tCO₂e to -66,085 tCO₂e.

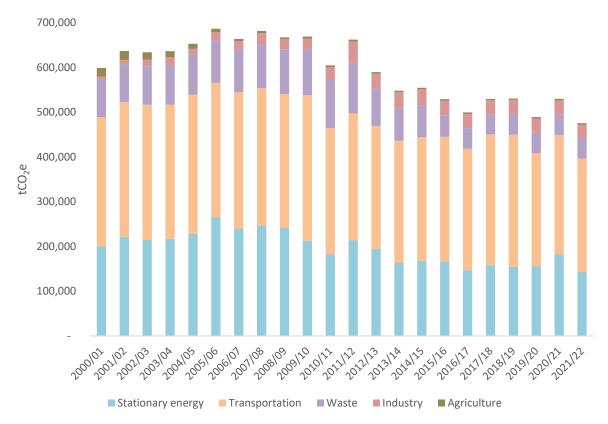
Forestry harvesting emissions and exotic forestry sequestration decreased by 30% (3,303 tCO₂e) and 11% (1,016 tCO₂e), respectively due to a decrease in Hutt City's proportion of Greater Wellington's land area covered by exotic trees of harvestable age (used to estimate Hutt City's proportion of the Greater Wellington region's commercial harvesting) and a region-wide decrease in harvesting. Forestry emissions are influenced by the cyclical nature of harvesting and planting regimes, where some years will have higher sequestration and some years will have higher harvesting emission. This depends on the age of forests and the demand for lumber and timber. Improved and updated data sources may impact the estimation of emissions from this source in the future.

Sequestration by native forests remained unchanged during this time as the same data has been used for each year; however, it is unlikely that there have been significant changes.

inge 19 to 2)

-30%

0%


-11%

4%

5.0 Annual Emissions Change from 2000/01 to 2021/22

Alongside the four years calculated as part of this inventory, annual emissions in Hutt City have also been calculated by AECOM for the period from 2000/01 to 2017/18 (updated in 2020). This means we can examine the trend over the last 22 years, from 2000/01 to 2021/22 (see Figure 10).

Note that there have been updates to data, emission factors, and methodology since these results were last updated so caution should be taken when comparing the results of this inventory with the results from previous years. To account for significant changes in transport and waste (see section 7.0) the 2000/01-2017/18 inventory results have been adjusted at a high level.

Figure 10 Change in Hutt City total gross emissions from 2000/01 to 2021/22

From 2000/01 to 2021/22 annual Total Gross Emissions have decreased by 21%, driven by long-term downwards trends in Stationary Energy, and Waste, and recent decreases in Transport emissions.

Key trends in annual emissions from 2000/01-2021/22:

- Stationary Energy emissions have decreased by 29%, largely due to an increase in renewable electricity generation as a proportion of the nation's total electricity generation.
- Waste emissions have decreased by 47% due to improvements to landfill sites, especially through landfill gas capture technology.
- Transport emissions have decreased by 12%, however they had been generally increasing up to 2018/19 and have decreased by 15% since then, impacted by COVID-19 disruptions on air travel and on-road travel.
- IPPU emissions have increased by 341% from a very small starting point, increasing from 1% to 7% of Total Gross Emissions. This follows the national trend.

6.0 Decoupling of GHG emissions from population growth and GDP

Decoupling of emissions is when emissions grow less rapidly than the growth of an economy (measured in Gross Domestic Product (GDP)). The term decoupling expresses the desire to mitigate emissions without harming economic well-being. The exact drivers for the decoupling of emissions from GDP are generally difficult to pinpoint. New policies, for restructuring the way to meet demand for energy, food, transportation, and housing will all contribute. Both direct local actions (e.g. landfill gas reductions) and indirect national trends (e.g. changes to emissions from electricity generation) can contribute to emissions decoupling. A complete discussion of the decoupling of emissions is beyond this project's scope.

Figure 11 shows the changes in gross emissions when compared to changes in other metrics of interest between 2018/19 and 2021/22. For example, total gross emissions have decreased by 10%, whilst the population in Hutt City has increased by 3%, resulting in a 13% reduction in total gross emissions per capita. Similarly, Gross Domestic Product (GDP) in Hutt City has increased by around 9%, resulting in an 18% decrease in the GHG emissions ratio to GDP. The data suggests that potentially a high-level, decoupling of the emissions covered by this assessment from economic growth has occurred between 2018/19 and 2021/22 in Hutt City. However, it is noted that emissions calculated as part of this assessment are based on production-based emissions. Emissions calculated as part of a consumption-based assessment may present a different outcome.

Hutt City Changes from 2018/19 to 2021/22

Figure 11 Change in total gross emissions compared to other metrics of interest

https://aecomaus.sharepoint.com/sites/CCF/Shared Documents/GWRC CCF FY22/3. Reports/GWRC_EmissionsInventory_2022_HuttCity_230619_Final.docx Revision 1 – 19-Jun-2023 Prepared for – Greater Wellington Regional Council – Co No.: N/A

7.0 Update to the 2018/19 Emissions Inventory

Improvements to the methodology, improvements in available data, and updates to emission factors since the 2018/19 Community Carbon Footprint (Emissions Inventory) was first published in 2020, have meant that the 2018/19 inventory results are required to be updated to allow direct comparison with the 2019/20, 2020/21, and 2021/22 inventories.

The previous 2018/19 inventory results and updated 2018/19 inventory results are presented in Table 19.

Critical reasons for the change to results between these inventories are outlined below:

- Stationary Energy emissions have been adjusted due to improvements in data and methodology changes, notably the natural gas and electricity data and emission factors, and a difference in the allocation of diesel and petrol sales to stationary energy purposes.
- Transportation emissions have been adjusted due to data improvements and methodology changes, most notably in how the Wellington Region's petrol and diesel sales have been allocated to the territorial authorities within the Region (from a population approach to a vehicle kilometre travelled approach). The marine freight and inter-island ferry calculations have also been updated based on best-practice guidance for cross-boundary transport emissions.
- Waste emissions have been adjusted due to updates to the estimate of landfill gas capture system efficiency at the open landfill sites, the estimate of historical waste (1950-1999), and the population not connected to centralised wastewater treatment. Wastewater treatment plant emissions calculations have been updated to align with WaterNZ guidance (2021).
- IPPU emissions have been adjusted due to a change in data and emission factors provided by the Ministry for the Environment (MfE).
- Agriculture emissions have been adjusted due to improvements in data based on regional trends since the 2017 territorial authority-level census and changes in MfE emission factors.
- Forestry emissions have been adjusted due to improvements in published data and emission factors.

	2018/19 previous inventory (2020) – tCO ₂ e	2018/19 updated inventory (2023) – tCO ₂ e
Stationary Energy	162,105	154,275
Transportation	295,494	295,558
Waste	39,299	46,448
IPPU	32,477	31,330
Agriculture	2,964	3,045
Forestry	-51,505	-63,798
Total Net Emissions (incl. forestry)	480,834	466,859
Total Gross Emissions (excl. forestry)	532,339	530,656

Table 19 Reported GHG emissions in Hutt City for 2018/19, showing the change in emissions between those previously reported (2020) and the updated results (2023)

Future emissions inventories for Hutt City may also require adjustments to the emission results reported here due to improvements to the inventory process.

8.0 Impact of the COVID-19 pandemic on GHG Emissions

COVID-19 impacted New Zealand and the entire world during 2020 and 2021; causing widespread government-imposed restrictions on businesses and individuals and huge shifts in behaviours and economic markets. Restrictions in New Zealand relating to COVID-19 began in mid-March 2020 with many personal and business restrictions continuing past the end of 2019/20 and throughout 2021/22.⁷

Globally, carbon dioxide emissions from fossil fuels (the largest contributor to greenhouse gas emissions) in 2020 decreased by 7% compared to 2019⁸. Emissions from the transportation sector account for the largest share of this decrease. Surface transport, e.g. car journeys, fell by approximately half at the peak of COVID-19 restrictions in April 2020 (when restrictions were at their maximum, particularly across Europe and the U.S. Globally, emissions recovered to near 2019 levels and are expected to continue to increase.

In New Zealand, national daily carbon dioxide emissions are estimated to have fallen by up to 41% during the level 4 lockdown in April 2020⁹. National gross emissions decreased by 3% from 2018/19 to 2019/20, which was largely driven by a decrease in fuel use in road transport due to COVID-19 pandemic restrictions, a decrease in fuel use in manufacturing industries and construction due to COVID-19 restrictions, and a decrease in fuel use from domestic aviation also due to COVID-19 restrictions.

Total gross emissions in Hutt City decreased by 55,136 tCO₂e (10%) between 2018/19 (pre-COVID-19) and 2021/22. A 14% decrease in Transport emissions (41,701 tCO₂e) accounts for the vast majority of this change. Notably, Transport emissions reduced by 14% between 2018/19 and 2019/20, driven by reduced road and air transport fuel use (see Figure 12). Air travel emissions in particular have been impacted by COVID-19 with emissions 73% lower in 2020/21 than in 2018/19 especially due to a reduction in international flights. It is expected that air travel emissions will rise to near pre-COVID-19 levels in 2022/23 in the Wellington Region. On-road transport emissions were also impacted by COVID-19, especially through restrictions on travel for periods of time in 2019/20 and 2021/22.

Despite changes in Stationary Energy, Agriculture, Waste, and IPPU emissions, these sectors are not judged to have been significantly affected by COVID-19. Of note, electricity consumption has increased during this time with annual emissions affected by the sources of national generation of electricity in each year. We cannot say with confidence whether energy consumption, or other changes have been significantly affected by COVID-19.



Figure 12 Hutt City Transport emissions for 2018/19, 2019/20, 2020/21 and 2021/22 (tCO2e)

- ⁹ Corinne Le Quere et al. Temporary Reduction in Daily Global CO₂ Emissions During the COVID-19 Forced Confinement https://aecomaus.sharepoint.com/sites/CCF/Shared Documents/GWRC CCF FY22/3. Reports/GWRC_EmissionsInventory_2022_HuttCity_230619_Final.docx
- Revision 1 19-Jun-2023

⁷ https://covid19.govt.nz/alert-system/history-of-the-covid-19-alert-system/

⁸ Pierre Friedlingstein et al. - Global Carbon Budget 2020 (2020)

Prepared for - Greater Wellington Regional Council - Co No.: N/A

9.0 Closing Statement

Hutt City GHG emissions inventory provides information for decision-making and action by the council, Hutt City stakeholders, and the wider community. We encourage the council to use the results of this study to update current climate actions plans and set emission reduction targets.

The emissions inventory developed for Hutt City covers emissions produced in the Stationary Energy, Transport, Waste, IPPU, Agriculture, and Forestry sectors using the GPC reporting framework. Sector-level data allows Hutt City to target and work with the sectors that contribute the most emissions to the inventory.

Understanding of the extensive and long-lasting effects of climate change is improving all the time. It is recommended that this full emissions inventory be updated regularly (every two or three years) to inform ongoing positive decision making to address climate change issues. Use of real-time data for major emissions sources and consideration of consumption-based emissions, can also add to understanding of emissions across the region.

The accuracy of any emissions inventory is limited by the availability, quality, and applicability of data. Areas where data could be improved for future inventories include forestry (forest cover and harvesting), agriculture (especially livestock numbers), wastewater, and on and off-road transport fuel use.

Where this Report indicates that information has been provided to AECOM by third parties, AECOM has made no independent verification of this information except as expressly stated in the Report. AECOM assumes no liability for any inaccuracies in or omissions to that information. This Report was prepared between January 2023 and June 2023 and is based on the information reviewed at the time of preparation. AECOM disclaims responsibility for any changes that may have occurred after this time. This Report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This Report does not purport to give legal advice.

Legal advice can only be given by qualified legal practitioners. Except as required by law, no other party should rely on this document without the prior written consent of AECOM. Where such agreement is provided, AECOM will provide a letter of reliance to the agreed third party in the form required by AECOM. To the extent permitted by law, AECOM expressly disclaims and excludes liability for any loss, damage, cost, or expenses suffered by any third party relating to or resulting from the use of, or reliance on, any information contained in this Report. AECOM does not admit that any action, liability, or claim may exist or be available to any third party. It is the responsibility of third parties to independently make inquiries or seek advice in relation to their particular requirements and proposed use of the information.

Appendix A

Assumptions and Data Sources

Sector / Category	Assumption and Data Sources
General	
Coographical	LGNZ local council mapping boundaries have been applied.
Geographical Boundary	The emissions inventory for each territorial authority covers the entirety of the territorial authority area.
	Population figures are provided by StatsNZ.
Population	Financial year populations have been used, these are based on the average population from the two calendar years (e.g. the average of 2020 and 2021 calendar year populations for 2020/21).
Climate Change Feedback	Emissions are expressed on a carbon dioxide-equivalent basis (CO ₂ e) including climate change feedback using the 100-year Global Warming Potential (GWP) values.
	Climate change feedbacks are the climate change impacts from GHGs that are increased as the climate changes. For example, once the Earth begins to warm, it triggers other processes on the surface and in the atmosphere. Current climate change feedback guidance is important to estimate the long-term impacts of GHGs.
	Emissions for individual main greenhouse gases for each emissions source are provided in the supplementary spreadsheet information supplied with this report.
GPC Production Approach	GPC reporting is predominately production-based (as opposed to consumption-based) but includes indirect emissions from energy consumption.
	Production-based emissions reporting is generally preferred by policy-makers due to robust established methodologies such as the GPC, which enables comparisons between different studies. Production-based approaches exclude globally produced emissions relating to consumption (e.g., embodied emissions relating to products produced elsewhere but consumed within the geographic area such as imported food products, cars, phones, clothes etc.).
	A breakdown of emissions by scope (1, 2 and 3) is included in the supplementary spreadsheet information supplied with this report.
Emission Factors	All emission factors have detailed source information in the calculation tables within which they are used. Where possible, the most up to date, NZ-specific emission factors have been applied.
	AR5 Global Warming Potential (GWP) figures for greenhouse gases have been used accounting for climate change feedbacks.
Transport Emissio	ons
Petrol and Diesel:	Total petrol and diesel sales data was provided by Wellington City Council for Wellington City Council, Hutt City City Council, Kāpiti Coast District Council, Hutt City Council and Upper Hutt City Council. Total petrol and diesel sales data was provided by Masterton District Council for South Wairarapa District Council, Masterton District Council and Carterton District Council.
	Sales data have then been then apportioned out to the territorial authorities within the region based on the total distance travelled by vehicles in each territorial authority in the financial year (known as Vehicle Kilometres Travelled or VKT).
	Allocating fuel consumption across a region based on VKT does not account for the likely makeup of the vehicle fleet of a particular geographic area (e.g. where a more rural area

https://aecomaus.sharepoint.com/sites/CCF/Shared Documents/GWRC CCF FY22/3. Reports/GWRC_EmissionsInventory_2022_HuttCity_230619_Final.docx Revision 1 – 19-Jun-2023 Prepared for – Greater Wellington Regional Council – Co No.: N/A

	may use more diesel, or a more urban area may have more hybrid or electric vehicles travelling).
	Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is considered to be a robust and comparable estimate of fuel consumption in a geographic area.
	Total petrol and diesel fuel use was then divided by likely end use. The division into transport and stationary energy end use (and within transport, on-road and off-road) was calculated using fuel end use data provided by the Energy Efficiency and Conservation Authority (EECA) in April 2020.
	 On-road transport is defined as all standard transportation vehicles used on roads e.g. cars, bikes, buses. Off-road transport is defined as machinery for agriculture, construction and other industry used off roads
	 industry used off-roads. Stationary energy petrol and diesel use is defined as fuel not used for transport either on or off roads. Petrol and diesel used for stationary energy has been reported in the Stationary Energy sector.
Rail Diesel	Consumption was calculated by KiwiRail using the Induced Activity method for system boundaries. The following assumptions were made:
	 Net Weight is product weight only and excludes container tare (the weight of an empty container) The Net Tonne-Kilometres (NTK) measurement has been used. NTK is the sum of the tonnes carried, multiplied by the distance travelled. National fuel consumption rates have been used to derive litres of fuel for
	 distance. Type of locomotive engine used, and jurisdiction topography, have not been incorporated in the calculations.
	Using the induced activity method, the trans-boundary routes were determined, and the number of stops taken along the way derived. The total litres of diesel consumed per route was then split between the departure territorial authority, arrival territorial authority and any territorial authority the freight stopped at along the way. If the freight travelled through but did not stop within a territorial authority, no emissions were allocated.
	Data was not available for 2021/22 therefore the 2020/21 value has been used for 2021/22.
	This data is subject to commercial confidentiality.
Jet Kerosene	Calculated using the Induced Activity method as per rail diesel.
(Scheduled Flights)	An estimate of fuel use was calculated for flights arriving and departing from Wellington Airport:
	 The schedule of flights arriving and departing from Wellington Airport containing details on the aircraft used for each flight was used to calculate fuel consumption. Flight distances and aircraft fuel burn rates were used for these calculations. As per the induced activity method, only 50% of emissions calculated per one-way arrival and departure were allocated to Wellington Airport. The remaining 50% of each leg was allocated to the originating or destination airport.
	An estimation of fuel use from military, freight, private, and other flights for 2020/21 and 2021/22 have been estimated based on data provided in 2020.
	Wellington Airport has been treated as a regional airport, so emissions have been split between the territorial authorities in the region on a population basis.
	Jus.sharepoint.com/sites/CCF/Shared Documents/GWRC CCF FY22/3. EmissionsInventory, 2022, HuttCity, 230619, Final docy

	Fuel use by aircraft using Kāpiti Coast Airport has also been accounted for using the same methodology, with all emissions allocated to Kapiti Coast District.
Aviation Gas	Aviation gas is mostly used by small aircraft for relatively short flights.
(General Aviation)	Data for Wellington Airport was not available at the time of writing, so an assumption has been made based on similar sized airports in New Zealand. This is the same assumption used in the previous 2019/20 inventory.
	Wellington Airport has been treated as a regional airport, so emissions have been split between the territorial authorities in the region on a population basis.
	Fuel use by aircraft using Kāpiti Coast Airport has also been accounted for using the same methodology, with all emissions allocated to Kapiti Coast District.
	There are a number of small aerodromes and runways across the region. Due to the difficulty of obtaining data, emissions related to flights from these locations have been excluded. It is likely that these emissions would have been very small in relation to other sources, and so would fit below the materiality threshold.
Marine Fuels -	Calculated using the Induced Activity method as per rail diesel and jet kerosene.
Freight	An estimate of fuel use was calculated for flights arriving and departing from CentrePort (Wellington Port):
	 The schedule of vessels arriving and departing from Wellington Port containing details on size of the vessel was used to calculate fuel consumption. Shipping distances and vessel fuel burn rates were used for these calculations. As per the induced activity method, only 50% of emissions calculated per one-way arrival and departure were allocated to Wellington Port. The remaining 50% of each leg was allocated to the originating or destination Port.
	International shipping passing through CentrePort was split by weight of cargo into 'Logs' and 'All other cargo'. Emissions generated by 'All other cargo' has been allocated on a per capita basis between all territorial authorities in the Wellington Region. Emissions generated by 'logs' was split between territorial authorities, proportionally, by the percentage share of district forest area of harvest age (>26 years old).
Marine Fuels	Port operational vessels:
(Local)	- Fuel use has been provided directly from Wellington Port (CPL) for 2020/21
	- The 2020/21 figure has also been used for 2019/20 and 2021/22
	- All emissions from this source have been allocated to Wellington City
	Local ferries:
	- Diesel fuel use has been provided directly by the ferry operator
	 Electricity use has been provided directly by the ferry operator (beginning in 2021/22)
	- All emissions from this source have been allocated to Wellington City
	Private use, other commercial operators, and commercial fishing:
	 Most small private boats use fuel purchased at vehicle gas stations so this consumption will be included in off-road transport petrol and diesel emissions.
	 No data was available to determine emissions from other commercial operators, and commercial fishing

Marine Fuels –	Data has been provided by the ferry operators in commercial confidence.
Inter-island	Assumptions of fuel use have been used where data was not provided.
Ferries	
Cruise Ships	No reliable data was available to determine the emissions from cruise ships (only relevant to 2019/20 as there were no cruise ship visits in 2020/21 and 2021/22).
LPG	Total North Island consumption data was used and then split on a per capita basis to determine the territorial authority's consumption. National LPG end use data has been used to breakdown consumption into stationary energy and transport usage, these are then reported separately in their respective categories.
Stationary Energy	r Emissions
Consumer Energy End Use	Stationary energy demand (e.g. electricity use, natural gas, etc.) is broken down by the sector in which they are consumed. We report stationary energy demand in the following categories: industrial (which includes agriculture, forestry, and fishing); commercial; and residential. These sectors follow the Australia New Zealand Standard Industrial Classification 2006 definitions.
	In addition to agriculture, forestry and fishing, the industrial sector includes mining, food processing, textiles, chemicals, metals, mechanical/electrical equipment and building and construction activities.
	Emissions from petrol and diesel used for stationary energy are not broken down into these sectors.
	Energy demand used for transport is reported in the transport sector.
Electricity Consumption	Electricity demand has been calculated using grid demand trends from the EMI website (www.emi.ea.govt.nz) to obtain raw grid exit point data for each territorial authority area. Reconciled demand has been used as per EMI's confirmation.
	The breakdown into sectors is based on NZ average consumption per sector (residential, commercial, and industrial).
Public Transport Electricity	Electricity used in the public transport system is included in the Transport sector (where known).
Private Transport Electricity	Electricity used for private transport (e.g. electric cars, electric bikes, electric micro- mobility) has not been separated from other stationary energy electricity consumption due to a lack of reliable data.
Coal Consumption	National coal consumption data has been provided by MBIE for all years (2022). Regional industrial coal data has been provided by EECA.
	National residential and commercial coal consumption has been divided between territorial authorities on a per capita basis.
	Regional industrial coal consumption has been divided between territorial authorities on a per capita basis, where relevant.

Biofuel emissions are broken down into Biogenic emissions (CO2) and Non-Biogenic emissions (CH4 and N2O). The latest year's data available is for 2019. 2019/20, 2020/21, and 2021/22 use the 2019 figure, adjusted for population change. LPG Consumption North Island LPG sales data (tonnes) has been provided by the LPG Association for 2020 and 2021. Data interpolated between known data points or copied from the most recent data point where data is not available. 'Auto' and 'Forklift' sales represent transport uses of LPG. All other sales represent stationary energy uses of LPG. Sales have been divided between territorial authorities on a per capita basis. The breakdown into sectors (Residential, Commercial, and Industrial) is based on NZ average consumption per sector as per MfE data. Petrol and Diesel (Stationary Energy End Use) Use) Use) Use) Use) Let use on the total distance travelled by vehicles in each territorial authority in the financial year (known as Vehicle Kilometres Travelled or VKT). Allocating fuel consumption across a region based on VKT does not account for the likely makeup of the vehicle fleet of a particular geographic area (e.g. where a more rural area may use more diesel, or a more urban area may have more hybrid or electric vehicles travelling). Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is considered to be a robust and comparable estimate of fuel consumption in a geograp		
Petrol and Use) Total petrol and diesel sales data was provided between territorial authonities on a per capital basis. EVG North Island LPG sales data (tonnes) has been provided by the LPG Association for 2020 figure, adjusted for population change. LPG North Island LPG sales data (tonnes) has been provided by the LPG Association for 2020 and 2021. Data interpolated between known data points or copied from the most recent data point where data is not available. 'Auto' and 'Forklift' sales represent transport uses of LPG. All other sales represent stationary energy uses of LPG. Sales have been divided between territorial authorities on a per capita basis. The breakdown into sectors (Residential, Commercial, and Industrial) is based on NZ average consumption per sector as per MIE data. Petrol and District Council, Hutt City City Council, Kaptit Coast District Council for Wellington District Council of South Wairarapa District Council, Masterton District Council and Upper Hutt City Council. Total petrol and diesel sales data was provided by Masterton District Council. Sales data have then been then apportioned out to the territorial authorities within the region based on the total distance travelled by vehicles in each territorial authority in the financial year (known as Vehicle Kilometres Travelled or VKT). Allocating fuel consumption across a region based on VKT does not account for the likely makeup of the vehicle fiele of a particular geographic area (e.g., where a more rural area may use more diesel, or a more urban area may have more hybrid or electric vehicles traveling). Fuel sold in an area does not always mean that the fuel is used in that area, however this approac	Wood	
emissions (CH4 and N ₂ O). The latest year's data available is for 2019. 2019/20, 2020/21, and 2021/22 use the 2019 figure, adjusted for population change. LPG Consumption and 2021. Data interpolated between known data points or copied from the most recent data point where data is not available. 'Auto' and 'Forklift' sales represent transport uses of LPG. All other sales represent stationary energy uses of LPG. Sales have been divided between territorial authorities on a per capita basis. The breakdown into sectors (Residential, Commercial, and Industrial) is based on NZ average consumption per sector as per MIE data. Petrol and Dised Dised Total petrol and diesel sales data was provided by Wellington City Council for Wellington City Council and Upper Hutt City Council. Hutt City Council. Kaptit Coast District Council, Hutt City Council and Upper Hutt City Council. Total petrol and diesel sales data was provided by Masterton District Council. Distric Council. Sales data have then been then apportioned out to the territorial authorities within the region based on the total distance travelled by VKT). Allocating fuel consumption across a region based on VKT does not account for the likely makeup of the vehicle fileet of a particular geographic area (e.g. where a more rural area may use more disels, or a more urban area may have more hybrid or electric vehicles travelling). Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is considered to be a robust and comparable estimate of fuel consump	Consumption	Biofuel consumption has been divided between territorial authorities on a per capita basis.
Instruction Figure, adjusted for population change. LPG North Island LPG sales data (tonnes) has been provided by the LPG Association for 2020 Consumption and 2021. Data interpolated between known data points or copied from the most recent data point where data is not available. 'Auto' and 'Forklift' sales represent transport uses of LPG. All other sales represent stationary energy uses of LPG. Sales have been divided between territorial authorities on a per capita basis. The breakdown into sectors (Residential, Commercial, and Industrial) is based on NZ average consumption per sector as per MfE data. Petrol and Diesel Objesel City Council, Hutt City City Council, Kapiti Coast District Council, Hutt City Council and Upper Hutt City Council. Total petrol and diesel sales data was provided by Masterton District Council on South Wairarapa District Council, Masterton District Council and Carteron District Council. Sales data have then been then apportioned out to the territorial authority in the financial year (known as Vehicle Kilometres Travelled or VKT). Allocating fuel consumption across a region based on VKT does not account for the likely makeup of the vehicle fleet of a particular geographic area (e.g. where a more rural area may use more diesel, or a more urban area may have more hybrid or electric vehicles travelling). Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is considered to be a robust and comparable estimate of fuel consumption in a geographic area. Oth-road transport is defined as all standar		
Consumption and 2021. Data interpolated between known data points or copied from the most recent data point where data is not available. 'Auto' and 'Forklift' sales represent transport uses of LPG. All other sales represent stationary energy uses of LPG. Sales have been divided between territorial authorities on a per capita basis. The breakdown into sectors (Residential, Commercial, and Industrial) is based on NZ average consumption per sector as per MIE data. Petrol and Total petrol and diesel sales data was provided by Wellington City Council for Wellington Diesel (Cy Council, Hutt City Council, Kapiti Coast District Council for Wellington Distric Council for South Wairarapa District Council, Masterton District Council and Carteton District Council. Use) Sales data have then been then apportioned out to the territorial authorities within the region based on the total distance travelled by vehicles in each territorial authority in the financial year (Known as Vehicle Klometters Travelled or VKT). Allocating fuel consumption across a region based on VKT does not account for the likely makeup of the vehicle fleet of a particular geographic area (e.g., where a more rural area may use more diesel, or a more urban area may have more hybrid or electric vehicles travelling). Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is considered to be a robust and comparable estimate of fuel consumption in a geographic area. Total petrol and diesel fuel use was then divided by likely end use. The division into transport and stationary energy end use (and within transport, on-road and off-road) was calculated using fuel end use data p		
Consumption and 2021. Data interpolated between known data points or copied from the most recent data point where data is not available. 'Auto' and 'Forklift' sales represent transport uses of LPG. All other sales represent stationary energy uses of LPG. Sales have been divided between territorial authorities on a per capita basis. The breakdown into sectors (Residential, Commercial, and Industrial) is based on NZ average consumption per sector as per MIE data. Petrol and Total petrol and diesel sales data was provided by Wellington City Council for Wellington District Council for South Wairarapa District Council, Hutt City Council and Upper Hutt City Council. Total petrol and diesel sales data was provided by Masterton District Council or South Wairarapa District Council, Masterton District Council and Carterton District Council. Use) Sales data have then been then apportioned out to the territorial authorities within the region based on the total distance travelled by vehicles in each territorial authority in the financial year (known as Vehicle Klometres Travelled or VKT). Allocating fuel consumption across a region based on VKT does not account for the likely makeup of the vehicle fleet of a particular geographic area (e.g., where a more rural area may use more diesel, or a more urban area may have more hybrid or electric vehicles travelling). Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is considered to be a robust and comparable estimate of fuel consumption in a geographic area. Total petrol and diesel fuel use was then divided by likely end use. The division into transport and stationary energy end use (and w		
stationary energy uses of LPG. Sales have been divided between territorial authorities on a per capita basis. The breakdown into sectors (Residential, Commercial, and Industrial) is based on NZ average consumption per sector as per MfE data. Petrol and Diesel Diesel (Stationary Energy End Use) District Council, Hutt City Council, Total petrol and diesel sales data was provided by Masterton District Council for South Wairarapa District Council, Masterton District Council and Carterton District Council. Sales data have then been then apportioned out to the territorial authorities within the region based on the total distance travelled by vehicles in each territorial authority in the financial year (known as Vehicle Kilometres Travelled or VKT). Allocating fuel consumption across a region based on VKT does not account for the likely makeup of the vehicle fleet of a particular geographic area (e.g. where a more rural area may use more diesel, or a more urban area may have more hybrid or electric vehicles travelling). Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is considered to be a robust and comparable estimate of fuel consumption in a geographic area. Total petrol and diesel fuel use was then divided by likely end use. The division into transport and stationary energy end use (and within transport, on-road and off-road) was calculated using fuel end use data provided by the Energy Efficiency and Conservation Authority (EECA) in April 2020. • On-road transport is defined as amachinery for agriculture, construction and other industry used off-roads. <td></td> <td>and 2021. Data interpolated between known data points or copied from the most recent</td>		and 2021. Data interpolated between known data points or copied from the most recent
The breakdown into sectors (Residential, Commercial, and Industrial) is based on NZ average consumption per sector as per MfE data. Petrol and Diesel (Stationary Energy End Upper Hutt City Council, Kupiti Coast District Council, Hutt City Council and Upper Hutt City Council. Total petrol and diesel sales data was provided by Masterton District Council for South Wairarapa District Council, Masterton District Council and Carterton District Council. Sales data have then been then apportioned out to the territorial authorities within the region based on the total distance travelled by vehicles in each territorial authority in the financial year (known as Vehicle Kilometres Travelled or VKT). Allocating fuel consumption across a region based on VKT does not account for the likely makeup of the vehicle fileet of a particular geographic area (e.g. where a more rural area may use more diesel, or a more urban area may have more hybrid or electric vehicles travelling). Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is considered to be a robust and comparable estimate of fuel consumption in a geographic area. Total petrol and diesel fuel use was then divided by likely end use. The division into transport and stationary energy end use (and within transport, on-road and off-road) was calculated using fuel end use data provided by the Energy Efficiency and Conservation Authority (EECA) in April 2020. • On-road transport is defined as all standard transportation vehicles used on roads e.g. cars, bikes, buses. • Off-road transport is defined as machinery for agriculture, construction and other industry used off-roads. • Stationary energy petrol and diesel use is defined as fuel		
average consumption per sector as per MfE data. Petrol and Diesel (Stationary Energy End Use) Total petrol and diesel sales data was provided by Wellington City Council for Wellington City Council, Hutt City Coupcil. Total petrol and diesel sales data was provided by Masterton District Council for South Wairarapa District Council, Masterton District Council and Carterton District Council. Sales data have then been then apportioned out to the territorial authorities within the region based on the total distance travelled by vehicles in each territorial authority in the financial year (known as Vehicle Kilometres Travelled or VKT). Allocating fuel consumption across a region based on VKT does not account for the likely makeup of the vehicle fleet of a particular geographic area (e.g. where a more rural area may use more diesel, or a more urban area may have more hybrid or electric vehicles travelling). Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is considered to be a robust and comparable estimate of fuel consumption in a geographic area. Total petrol and diesel fuel use was then divided by likely end use. The division into transport and stationary energy end use (and within transport, on-road and off-road) was calculated using fuel end use data provided by the Energy Efficiency and Conservation Authority (EECA) in April 2020. • On-road transport is defined as all standard transportation vehicles used on roads e.g. cars, bikes, buses. • Off-road transport is defined as machinery for agriculture, construction and other industry used off-roads. • Stationary energy petrol and diesel use is defined as fuel not used for transport either on or off road		Sales have been divided between territorial authorities on a per capita basis.
Diesel (Stationary Energy End Use)City Council, Hutt City City Council, Kapiti Coast District Council, Hutt City Council and Upper Hutt City Council. Total petrol and diesel sales data was provided by Masterton District Council for South Wairarapa District Council, Masterton District Council and Carterton District Council.Sales data have then been then apportioned out to the territorial authorities within the region based on the total distance travelled by vehicles in each territorial authority in the financial year (known as Vehicle Kilometres Travelled or VKT).Allocating fuel consumption across a region based on VKT does not account for the likely makeup of the vehicle fleet of a particular geographic area (e.g. where a more rural area may use more diesel, or a more urban area may have more hybrid or electric vehicles travelling).Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is considered to be a robust and comparable estimate of fuel consumption in a geographic area.Total petrol and diesel fuel use was then divided by likely end use. The division into transport and stationary energy end use (and within transport, on-road and off-road) was calculated using fuel end use data provided by the Energy Efficiency and Conservation Authority (EECA) in April 2020.On-road transport is defined as machinery for agriculture, construction and other industry used off-roads.Off-road transport is defined as machinery for agriculture, construction and other industry used off-roads.Stationary energy petrol and diesel use is defined as fuel not used for transport either on or off roads. Petrol and diesel use do for stationary energy has been reported in the Stationary Energy Sector.Natural GasNatural gas consumption data h		
Diesel (Stationary Energy End Use)City Council, Hutt City City Council, Kapiti Coast District Council, Hutt City Council and Upper Hutt City Council. Total petrol and diesel sales data was provided by Masterton District Council for South Wairarapa District Council, Masterton District Council and Carterton District Council.Sales data have then been then apportioned out to the territorial authorities within the region based on the total distance travelled by vehicles in each territorial authority in the financial year (known as Vehicle Kilometres Travelled or VKT).Allocating fuel consumption across a region based on VKT does not account for the likely makeup of the vehicle fleet of a particular geographic area (e.g. where a more rural area may use more diesel, or a more urban area may have more hybrid or electric vehicles travelling).Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is considered to be a robust and comparable estimate of fuel consumption in a geographic area.Total petrol and diesel fuel use was then divided by likely end use. The division into transport and stationary energy end use (and within transport, on-road and off-road) was calculated using fuel end use data provided by the Energy Efficiency and Conservation Authority (EECA) in April 2020On-road transport is defined as machinery for agriculture, construction and other industry used off-roadsStationary energy petrol and diesel use is defined as fuel not used for transport either on or off roads. Petrol and diesel use is defined as fuel not used for transport either on or off roads. Petrol and diesel use for stationary energy has been reported in the Stationary Energy Sector.Natural GasNatural gas consumption data has been provided by		
region based on the total distance travelled by vehicles in each territorial authority in the financial year (known as Vehicle Kilometres Travelled or VKT). Allocating fuel consumption across a region based on VKT does not account for the likely makeup of the vehicle fleet of a particular geographic area (e.g. where a more rural area may use more diesel, or a more urban area may have more hybrid or electric vehicles travelling). Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is considered to be a robust and comparable estimate of fuel consumption in a geographic area. Total petrol and diesel fuel use was then divided by likely end use. The division into transport and stationary energy end use (and within transport, on-road and off-road) was calculated using fuel end use data provided by the Energy Efficiency and Conservation Authority (EECA) in April 2020. On-road transport is defined as all standard transportation vehicles used on roads e.g. cars, bikes, buses. Off-road transport is defined as machinery for agriculture, construction and other industry used off-roads. Stationary energy petrol and diesel use is defined as fuel not used for transport either on or off roads. Petrol and diesel used for stationary energy has been reported in the Stationary Energy sector. Natural Gas Natural gas consumption data has been provided by FirstGas. Territorial Authorities	Diesel (Stationary Energy End	City Council, Hutt City City Council, Kapiti Coast District Council, Hutt City Council and Upper Hutt City Council. Total petrol and diesel sales data was provided by Masterton District Council for South Wairarapa District Council, Masterton District Council and
makeup of the vehicle fleet of a particular geographic area (e.g. where a more rural area may use more diesel, or a more urban area may have more hybrid or electric vehicles travelling). Fuel sold in an area does not always mean that the fuel is used in that area, however this approach is considered to be a robust and comparable estimate of fuel consumption in a geographic area. Total petrol and diesel fuel use was then divided by likely end use. The division into transport and stationary energy end use (and within transport, on-road and off-road) was calculated using fuel end use data provided by the Energy Efficiency and Conservation Authority (EECA) in April 2020. On-road transport is defined as all standard transportation vehicles used on roads e.g. cars, bikes, buses. Off-road transport is defined as machinery for agriculture, construction and other industry used off-roads. Stationary energy petrol and diesel use is defined as fuel not used for transport either on or off roads. Petrol and diesel use for stationary energy has been reported in the Stationary Energy sector. Natural Gas Natural gas consumption data has been provided by FirstGas. Territorial Authorities		region based on the total distance travelled by vehicles in each territorial authority in the
approach is considered to be a robust and comparable estimate of fuel consumption in a geographic area. Total petrol and diesel fuel use was then divided by likely end use. The division into transport and stationary energy end use (and within transport, on-road and off-road) was calculated using fuel end use data provided by the Energy Efficiency and Conservation Authority (EECA) in April 2020. On-road transport is defined as all standard transportation vehicles used on roads e.g. cars, bikes, buses. Off-road transport is defined as machinery for agriculture, construction and other industry used off-roads. Stationary energy petrol and diesel use is defined as fuel not used for transport either on or off roads. Petrol and diesel used for stationary energy has been reported in the Stationary Energy sector. Natural Gas Natural gas consumption data has been provided by FirstGas. Territorial Authorities		makeup of the vehicle fleet of a particular geographic area (e.g. where a more rural area may use more diesel, or a more urban area may have more hybrid or electric vehicles
transport and stationary energy end use (and within transport, on-road and off-road) was calculated using fuel end use data provided by the Energy Efficiency and Conservation Authority (EECA) in April 2020. On-road transport is defined as all standard transportation vehicles used on roads e.g. cars, bikes, buses. Off-road transport is defined as machinery for agriculture, construction and other industry used off-roads. Stationary energy petrol and diesel use is defined as fuel not used for transport either on or off roads. Petrol and diesel used for stationary energy has been reported in the Stationary Energy sector. Natural Gas Natural gas consumption data has been provided by FirstGas. Territorial Authorities		approach is considered to be a robust and comparable estimate of fuel consumption in a
 e.g. cars, bikes, buses. Off-road transport is defined as machinery for agriculture, construction and other industry used off-roads. Stationary energy petrol and diesel use is defined as fuel not used for transport either on or off roads. Petrol and diesel used for stationary energy has been reported in the Stationary Energy sector. Natural Gas Natural gas consumption data has been provided by FirstGas. Territorial Authorities 		transport and stationary energy end use (and within transport, on-road and off-road) was calculated using fuel end use data provided by the Energy Efficiency and Conservation
industry used off-roads. - Stationary energy petrol and diesel use is defined as fuel not used for transport either on or off roads. Petrol and diesel used for stationary energy has been reported in the Stationary Energy sector. Natural Gas Natural gas consumption data has been provided by FirstGas. Territorial Authorities		 On-road transport is defined as all standard transportation vehicles used on roads e.g. cars, bikes, buses.
either on or off roads. Petrol and diesel used for stationary energy has been reported in the Stationary Energy sector. Natural Gas Natural gas consumption data has been provided by FirstGas. Territorial Authorities		
		either on or off roads. Petrol and diesel used for stationary energy has been
		Natural gas consumption data has been provided by FirstGas. Territorial Authorities supplied by gas from each Point of Connection (POC) have been confirmed by FirstGas.

Biogenic Emissions (CO ₂) Some carbon dioxide (CO ₂) emissions are considered to be biogenic. These a emissions where the carbon has been recently derived from CO ₂ present in th atmosphere (for example, some agricultural and waste emissions). These emi not included in calculating total CO ₂ e. Agriculturel Agriculturel Emissions Territorial authority livestock numbers and fertiliser data taken from the Agricul (StatsNZ). The last territorial authority census was in 2017. Regional agricultur StatsNZ (2021) has been used to estimate the change in livestock and fertilise 2017. Due to the gap in data for 2021/22, the 2020/21 figure has been used to Solid Waste Emissions Landfill Emissions Landfill waste volume and landfill gas capture system information has been pro respective council departments. Solid waste emissions from landfill are measured using the IPCC First Order D method that covers landfill activity between 1950 and the present day, as per t reporting requirements. This method accounts for the gradual release of emiss waste over a long period of time, and so calculates the emissions produced pe waste in landfill (including emissions from closed landfill sites). Waste volume: • Where information is not available, waste volumes have been estimate historical national data on a per capita basis. Landfill gas capture system efficiency: • Efficiency and coverage of the system used in the emissions calculated provided by the respective councils based on recorded or estimated di Landfill gas flaring / burning for energy generation. • There is biogas energy generation used in the calculation of Southern Landfill sub- borned du WCC in relation to the calculation of Southern Landfill gas borne	
Agriculture Territorial authority livestock numbers and fertiliser data taken from the Agricul (StatsNZ). The last territorial authority census was in 2017. Regional agricultur StatsNZ (2021) has been used to estimate the change in livestock and fertilise 2017. Due to the gap in data for 2021/22, the 2020/21 figure has been used for Solid Waste Emissions Landfill Landfill waste volume and landfill gas capture system information has been pro- respective council departments. Solid waste emissions from landfill are measured using the IPCC First Order D method that covers landfill activity between 1950 and the present day, as per t reporting requirements. This method accounts for the gradual release of emiss waste over a long period of time, and so calculates the emissions produced pe waste in landfill (including emissions from closed landfill sites). Waste volume: • Where information is not available, waste volumes have been estimate historical national data on a per capita basis. Landfill gas capture system efficiency: • Efficiency and coverage of the system used in the emissions calculate provided by the respective councils based on recorded or estimated da Landfill gas flaring / burning for energy generation: • There is biogas energy generation used in the calculations has been taken provided by WCC in relation to the calculation of Southern Landfill gas burned for energy generation used in the calculations has been taken provided by WCC in relating to burning of landfill gas for energy generation have included in the Stationary Energy sector. Emissions reallocated to territorial authorities based on where the waste was even if the waste is disposed in landfill outside the territorial authority:	present in the
Solid Waste StatsNZ). The last territorial authority census was in 2017. Regional agricultur StatsNZ (2021) has been used to estimate the change in livestock and fertilise 2017. Due to the gap in data for 2021/22, the 2020/21 figure has been used for Solid Waste Emissions Landfill Landfill waste volume and landfill gas capture system information has been pro- respective council departments. Solid waste emissions from landfill are measured using the IPCC First Order D method that covers landfill activity between 1950 and the present day, as per t reporting requirements. This method accounts for the gradual release of emiss waste over a long period of time, and so calculates the emissions produced pe waste in landfill (including emissions from closed landfill sites). Waste volume: • Where information is not available, waste volumes have been estimate historical national data on a per capita basis. Landfill gas capture system efficiency: • Efficiency and coverage of the system used in the emissions calculatio provided by the respective councils based on recorded or estimated da Landfill gas flaring / burning for energy generation at some councils in the Wellington Region. The percentage of landfill gas burned for energy generation used in the calculation fas base ben taken provided by WCC in relation to the calculation of Southern Landfill which is a site i some councils in the Wellington Region. The percentage of landfill gas burned for energy generation used in the calculation fas been taken provided by WCC in relation to the calculation of Southern Landfill Su Emissions Factor (UEF) for 2019/20 and 2021/22. Emissions are allocated to territorial authorities based on where the waste was even if the waste is disposed in landfill outside the territ	
Landfill Landfill waste volume and landfill gas capture system information has been provided that covers landfill activity between 1950 and the present day, as per treporting requirements. This method accounts for the gradual release of emissions waste over a long period of time, and so calculates the emissions produced perwaste in landfill (including emissions from closed landfill sites). Waste volume: - - Where information is not available, waste volumes have been estimated historical national data on a per capita basis. Landfill gas capture system efficiency: - - Efficiency and coverage of the system used in the emissions calculated to provided by the respective councils based on recorded or estimated data and fill gas flaring / burning for energy generation: - There is biogas energy generation used in the calculations has been taken provided by WCC in relation to the calculations has been taken provided by WCC in relation to the calculations has been taken provided by WCC in relation used in the calculations has been taken provided by WCC in relation to the calculations has been taken provided by WCC in relation to the calculations has been taken provided by WCC in relation to the calculations has been taken provided by WCC in relation to the calculation of Southern Landfill's Undermissions Factor (UEF) for 2019/20 and 2021/22. - Emissions are allocated to territorial authorities based on where the waste wast even if the waste is disposed in landfill outside the territorial authority: - Information on the origin and destination of waste produced in each te has been provided by the respective councils based on recorded or est	al agricultural data from and fertiliser use since
Emissions respective council departments. Solid waste emissions from landfill are measured using the IPCC First Order D method that covers landfill activity between 1950 and the present day, as per t reporting requirements. This method accounts for the gradual release of emissis waste over a long period of time, and so calculates the emissions produced period of time, and so calculates the emissions produced period of time, and so calculates the emissions produced period of time, and so calculates the emissions produced period of time, and so calculates the emissions produced period of time, and so calculates the emissions produced period of time, and so calculates the emissions produced period of time, and so calculates the emissions produced period of time, and so calculates the emissions produced period period of time, and so calculates the emissions produced period period period period of time, and so calculates the emissions produced period perio	
method that covers landfill activity between 1950 and the present day, as per t reporting requirements. This method accounts for the gradual release of emiss waste over a long period of time, and so calculates the emissions produced pe waste in landfill (including emissions from closed landfill sites). Waste volume: Where information is not available, waste volumes have been estimate historical national data on a per capita basis. Landfill gas capture system efficiency: Efficiency and coverage of the system used in the emissions calculatic provided by the respective councils based on recorded or estimated data and the present of the system used in the emissions calculated provided by the respective councils based on recorded or estimated data some councils in the Wellington Region. The percentage of landfill gas burned for energy generation at Southern Landfill which is a site is some councils in the Wellington Region. The percentage of landfill gas burned for energy generation used in the calculations has been taken provided by WCC in relation to the calculation of Southern Landfill's Up Emissions Factor (UEF) for 2019/20 and 2021/22. Emissions relating to burning of landfill gas for energy generation have included in the Stationary Energy sector. Emissions are allocated to territorial authorities based on where the waste was even if the waste is disposed in landfill outside the territorial authority: Information on the origin and destination of waste produced in each te has been provided by the respective councils based on recorded or es data. Wastewater Emissions Wastewater Emissions All wastewater emissions have been calculated following the WaterNZ (2	as been provided by the
 Where information is not available, waste volumes have been estimate historical national data on a per capita basis. Landfill gas capture system efficiency: Efficiency and coverage of the system used in the emissions calculatio provided by the respective councils based on recorded or estimated data on a per capita basis. Landfill gas flaring / burning for energy generation: 	lay, as per the GPC ase of emissions from
Wastewater Emissions Wastewater Emissions Wastewater Emissions Wastewater Emissions Calculation of emissions have been calculated following the WaterNZ (2021) of the sent that for emissions the value of the sent that following the respective councils based on the the the sent that the the sent	
 Efficiency and coverage of the system used in the emissions calculation provided by the respective councils based on recorded or estimated date and fill gas flaring / burning for energy generation: There is biogas energy generation at Southern Landfill which is a site is some councils in the Wellington Region. The percentage of landfill gas burned for energy generation used in the calculations has been taken provided by WCC in relation to the calculation of Southern Landfill's Unemissions Factor (UEF) for 2019/20 and 2021/22. Emissions are allocated to territorial authorities based on where the waste was even if the waste is disposed in landfill outside the territorial authority: Information on the origin and destination of waste produced in each tern has been provided by the respective councils based on recorded or estimated at the state. Wastewater Emissions Mastewater Treatment All wastewater emissions have been calculated following the WaterNZ (2021) of Wastewater Treatment Plants: Calculation of emissions includes emissions released directly from waster treatment, flaring of captured gas and from discharge onto land/water. 	en estimated based on
Wastewater Emissions Wastewater There allocated to territorial authorities Wastewater All wastewater emissions have been calculated following the WaterNZ (2021) of Wastewater Treatment All wastewater Calculation of emissions includes emissions released directly from wast treatment, flaring of captured gas and from discharge onto land/water.	
• There is biogas energy generation at Southern Landfill which is a site is some councils in the Wellington Region. The percentage of landfill gas burned for energy generation used in the calculations has been taken provided by WCC in relation to the calculation of Southern Landfill's Unemissions Factor (UEF) for 2019/20 and 2021/22. • Emissions relating to burning of landfill gas for energy generation have included in the Stationary Energy sector. Emissions are allocated to territorial authorities based on where the waste was even if the waste is disposed in landfill outside the territorial authority: • Information on the origin and destination of waste produced in each ter has been provided by the respective councils based on recorded or est data. Wastewater Emissions Wastewater Emissions All wastewater emissions have been calculated following the WaterNZ (2021) wastewater Treatment Calculation of emissions includes emissions released directly from waster treatment, flaring of captured gas and from discharge onto land/water.	
wastewater All wastewater emissions Wastewater All wastewater emissions have been calculated following the WaterNZ (2021) of the wastewater Treatment All wastewater Calculation of emissions includes emissions released directly from waster the treatment, flaring of captured gas and from discharge onto land/water.	
even if the waste is disposed in landfill outside the territorial authority: - Information on the origin and destination of waste produced in each terhas been provided by the respective councils based on recorded or est data. Wastewater Emissions Wastewater Treatment All wastewater emissions have been calculated following the WaterNZ (2021) of Wastewater Treatment Plants: - Calculation of emissions includes emissions released directly from waster treatment, flaring of captured gas and from discharge onto land/water.	f landfill gas flared or been taken from data Landfill's Unique
has been provided by the respective councils based on recorded or est data. Wastewater Emissions Wastewater Treatment All wastewater emissions have been calculated following the WaterNZ (2021) of Wastewater Treatment Plants: - Calculation of emissions includes emissions released directly from was treatment, flaring of captured gas and from discharge onto land/water.	•
Wastewater All wastewater emissions have been calculated following the WaterNZ (2021) of Wastewater Treatment Plants: - Calculation of emissions includes emissions released directly from was treatment, flaring of captured gas and from discharge onto land/water.	
Treatment Wastewater Treatment Plants: - Calculation of emissions includes emissions released directly from was treatment, flaring of captured gas and from discharge onto land/water.	
Treatment Wastewater Treatment Plants: - Calculation of emissions includes emissions released directly from was treatment, flaring of captured gas and from discharge onto land/water.	rNZ (2021) guidance.
treatment, flaring of captured gas and from discharge onto land/water.	· · -
WaterNZ (2021) guidance	land/water. used based on the
 Emissions relating to discharge of biosolids sent to landfill (if present) I included in the Solid Waste emissions source. 	(if present) have been

	- Emissions are allocated to territorial authorities based on where the wastewater was produced, even if the wastewater is treated outside the territorial authority.
	Individual Septic Tanks:
	 Populations not connected to known centralised wastewater treatment plants are assumed to be using septic tanks.
Industrial Emissio	ns
Industrial Processes	It is assumed that there are no significant non-energy related emissions of greenhouse gasses from industrial processes in the Region (e.g. aluminium manufacture).
Industrial Product Use	National data covering industrial product use (e.g., fire extinguishers, refrigerants) have been estimated based on data provided in the New Zealand Greenhouse Gas Emissions 1990-2020 report (MfE 2022). Emissions are estimated on a per capita basis applying a national average per person.
Forestry Emission	l IS
Exotic Forestry Harvested and Exotic Forest coverage	Harvested forestry, and forest cover information for each territorial authority has been derived from Landcare Research data.
	This emissions inventory accounts for forest carbon stock changes from afforestation, reforestation, deforestation, and forest management (i.e., it applies land-use accounting conventions under the United Nations Framework Convention on Climate Change rather than the Kyoto Protocol). It treats emissions from harvesting and deforestation as instantaneous rather than accounting for the longer-term emission flows associated with harvested wood products.
	The emissions inventory considers regenerating (growing) forest areas only. Capture of carbon from the atmosphere is negligible for mature forests that have reached a steady state.
Native Forest	Native forest land area for each territorial authority has been provided by Landcare Research.