2014/22 Terrestrial ecology monitoring

Contents

- 2014/22 Terrestrial ecology monitoring
 - Contents
- Disclaimer
- Overview
 - Monitoring network
 - Monitoring results and methods
- Methods
 - Plot sampling
 - Vegetation monitoring
 - Bird monitoring
 - Possum monitoring
 - Ungulate & lagomorph monitoring
 - Plot layout and transect diagrams
- Results
 - Vegetation monitoring of indigenous vascular plant species
 - Monitoring of indigenous bird species
 - Monitoring of possum density
 - o Monitoring of ungulates & lagomorphs
- Appendix
 - Monitoring details
 - Data tables
 - Vegetation monitoring
 - Bird monitoring
 - Possum monitoring
 - Ungulate & lagomorph monitoring

Contents Page 2 of 40

Disclaimer

This report has been prepared by Environmental Science staff of Greater Wellington (GW) and as such does not constitute Council policy.

In preparing this report, the authors have used the best currently available data and have exercised all reasonable skill and care in presenting and interpreting these data. Nevertheless, GW does not accept any liability, whether direct, indirect, or consequential, arising out of the provision of the data and associated information within this report. Furthermore, as GW endeavours to continuously improve data quality, amendments to data included in, or used in the preparation of, this report may occur without notice at any time.

GW requests that if excerpts or inferences are drawn from this report for further use, due care should be taken to ensure the appropriate context is preserved and is accurately reflected and referenced in subsequent written or verbal communications. Any use of the data and information enclosed in this report, for example, by inclusion in a subsequent report or media release, should be accompanied by an acknowledgement of the source.

For the latest available results go to the GW environmental data hub.

Disclaimer Page 3 of 40

Overview

Regional councils are required to monitor and report on the state of the environment. This report summarises the results of Greater Wellington's (GW) programme to monitor the health of terrestrial biodiversity in the Wellington region. The programme incorporates annual monitoring to measure the state and trend of terrestrial ecological integrity at sites sampled on an 8km x 8km grid over a five-year cycle starting in the summer of 2014/15.

Key monitoring objectives are to determine:

- 1. the <u>state and trend</u> of vegetation and bird community richness, structure and composition,
- 2. the <u>pressure</u> of plant and animal pests based on their regional distribution and local abundance, and
- 3. the <u>effectiveness</u> of pest management based on the abundance (richness, basal area and density) of indigenous plants susceptible to introduced herbivores and the abundance of indigenous bird guilds (frugivores, insectivores and ground dwelling) that are susceptible to introduced herbivores and carnivores.

Monitoring network

The monitoring network is based on a national 8km x 8km sampling grid of points, 126 of which fall in the Wellington region shown on the maps below. The national sampling grid was established to inform the Land Use and Carbon Accounting System (LUCAS) maintained by the Ministry for the Environment (MfE) as part of New Zealand's Kyoto Protocol reporting. The grid is also used by the Department of Conservation (DOC) as the basis of a systematic programme of sampling native species and pests across all Public Conservation Land (PCL). GW surveys the remainder of the points not covered by MfE or DOC (access permitting), incorporating the data from all surveyed points to report on the state and trend of terrestrial ecological integrity across the Wellington region. See the methods section for more information on plot sampling.

Overview Page 4 of 40

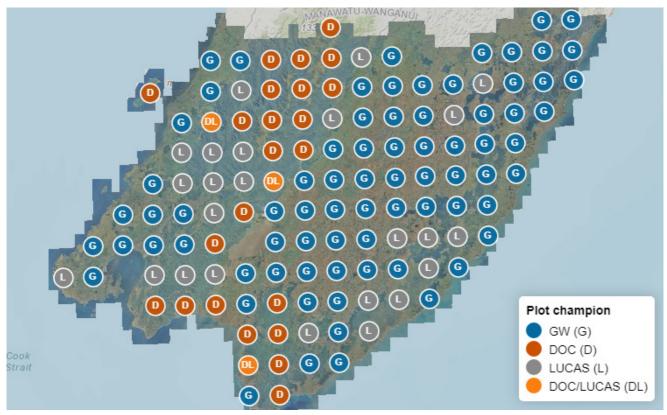


Figure 1: Terrestrial ecology monitoring locations coloured and annotated by the champion of that plot. Land Information New Zealand (LINZ) 2016/17 aerial photos are shown as a baselayer for reference when assessing results in later sections. Note that the plot that falls over Lake Wairarapa is not applicable for this type of monitoring and is not shown on maps and results.

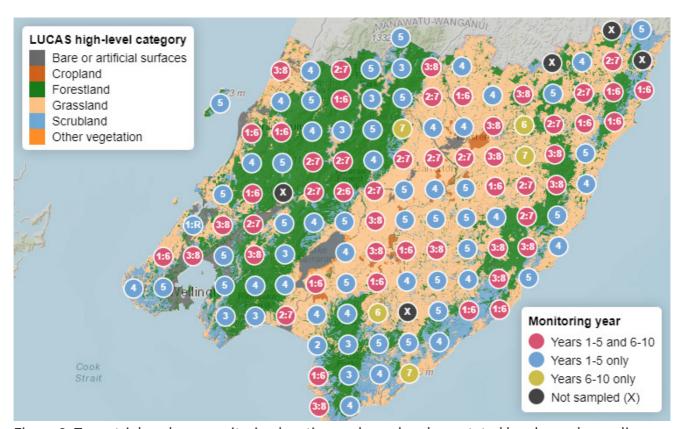


Figure 2: Terrestrial ecology monitoring locations coloured and annotated by planned sampling year. High level LUCAS landcover classifications are shown as a baselayer for reference when assessing results in later sections.

Overview Page 5 of 40

Monitoring results and methods

Monitoring is undertaken for the variables described below. Use the links below to navigate to the key findings for each:

- <u>Vegetation monitoring of indigenous vascular plant species</u>: The species richness (number), composition (types) and structure (different growth stages) of all vegetation was recorded in different height tiers within a 20m x 20m plot at each site.
- Monitoring of indigenous bird species: Bird counts were conducted at five stations at each site. Two sets of five-minute bird counts were completed at each station, the second count including a measure of the distance between the count station and the birds recorded.
- Monitoring of possum density: The abundance of possums was determined in the first season using leg-hold traps (by DOC) and wax tags (by GW) before both DOC and GW switched to using chew cards from the second sampling season.
- Monitoring of ungulates & lagomorphs: Pellet counts for ungulates (deer, goat, cattle, pigs and sheep) and lagomorphs (rabbits and hares) were conducted along transects established parallel to the possum monitoring transects.

Overview Page 6 of 40

Methods

Plot sampling

Vegetation, birds and pest animals were monitored during late spring to early autumn at sites located at or close to each of the points on the 8km x 8km grid. Sites were sampled as shown in Figure 3, following DOC monitoring procedures (<u>Department of Conservation 2016</u>, <u>2018</u>). Site descriptions were recorded with the intention of revisiting sites on a five-year cycle.

Any unexplained data gaps or year differences in the results pages could be due to complexities of sampling and coordinating different plot champions. Please contact the <u>Land</u>, <u>Ecology and Climate Team in Environmental Science at GW</u> for any specific requests regarding plot sampling and results.

Vegetation monitoring

At each site the sampling team established a permanently marked $20 \,\mathrm{m} \,\mathrm{x} \,20 \,\mathrm{m}$ vegetation plot, divided into $16 \,(5 \,\mathrm{m} \,\mathrm{x} \,5 \,\mathrm{m})$ subplots (Figure 5). In each vegetation plot all the trees and tree ferns (>2.5 cm Diameter at Breast Height [DBH]) were tagged and had their diameters recorded. The exception to this was in production forests, where trees were measured but not marked as there was a concern that marking trees could influence the management at the site. Saplings (>1.35 m and <2.5 m tall) were counted for each species in the plot. Circular understory plots (0.5 m radius) were positioned halfway along the boundaries of the subplots that lay within the $20 \,\mathrm{m} \,\mathrm{x} \,20 \,\mathrm{m}$ plot boundary. This gave $24 \,(0.8 \,\mathrm{m}^2)$ understory plots in which all species <1.35 m tall were counted (Department of Conservation 2018).

Bird monitoring

Bird counts were conducted at five stations at each site, one in the south western corner of the 20m x 20m vegetation plot and the other four 20m off the ends of each of the possum monitoring transects as shown in Figure 3. This is a slight deviation from the DOC protocol where the count station is monitored from the centre of the plot, not the corner. This deviation was instituted to reduce disturbance to the plot and represents a difference of ~14m. This difference was not considered to be influencing the count given that birds are being recorded from a radius of ~200m. Bird counts were conducted as two sets of five minute counts at each count station, the distance to the bird being recorded in the second set of counts (Department of Conservation 2016). Sets of counts were repeated twice at each station to record 10 five-minute bird counts and 10 five-minute distance bird counts at each site.

Methods Page 7 of 40

Possum monitoring

Possum monitoring transects (each 200m long) were laid out at 45° angles from each of the corners of the 20m x 20m vegetation plot (Figure 6). Ten chew cards were placed on trees or 5mm aluminium rods 20cm-30cm above the ground, starting 20m from the corner of the plot and spaced at 20m intervals along each of these four possum monitoring transects (i.e. 40 cards per site). The chew cards were constructed from a 9cm x 18cm rectangle made of 3mm white plastic coreflute, loaded with aniseed flavoured possum dough. In accordance with the DOC protocol, cards were left out for one dry night and the bite marks on cards identified to determine the relative abundance of pests (Department of Conservation 2016).

Initially, DOC used leg-hold traps for possum monitoring. These were however not an option in production landscapes where livestock may be injured. DOC converted to chew cards at all sites in the second season as these were considered easier to deploy (Forsyth et al. 2015).

GW used wax tags for possum monitoring in its first two seasons of monitoring but included chew cards from its second season. GW then discontinued using wax tags and continued with chew cards in its third season. The wax tags were not placed on the lines off the corners of the vegetation plot as per the protocol, but were run as four lines of ten wax tags each, spaced at 20m intervals, in the nearest wooded areas. Wax tag lines were not sampled if there were no wooded areas close by, and fewer lines were sampled if there was not enough wooded area in which to establish all four lines. The chew cards were used in all habitats. Although used primarily to monitor possums, the chew cards also recorded the presence of rats and mice.

Ungulate & lagomorph monitoring

Ungulate pellet density transects (each 150m long) were established parallel to the possum monitoring transects off the corners of the vegetation plot, spaced 3.5m apart. The ungulate pellet density transects started at the next sub-plot corner clockwise around the vegetation plot from the possum monitoring transect (Figure 6). Each line consisted of 30 quadrats, spaced at 5m intervals (i.e. 120 quadrats per site). Each quadrat had a 1m radius (3m²) in which all ungulate dung pellets were recorded. Nested within the centre of this 1m radius quadrat was an inner subquadrat with a 0.18m radius (0.1m²) in which all hare and rabbit pellets were counted. In the first season the GW sampling team realised that they could not reliably distinguish deer and goat pellets, so these were combined in the monitoring results described here (Department of Conservation 2016). Unlike the DOC sampling teams that surveyed primarily in natural landscapes, the GW sampling team sampled extensively in livestock production landscapes. Consequently, the GW sampling team found it necessary to record livestock dung and pellets separately to that of deer and goats, while these were combined in the ungulate counts by DOC.

Methods Page 8 of 40

Plot layout and transect diagrams

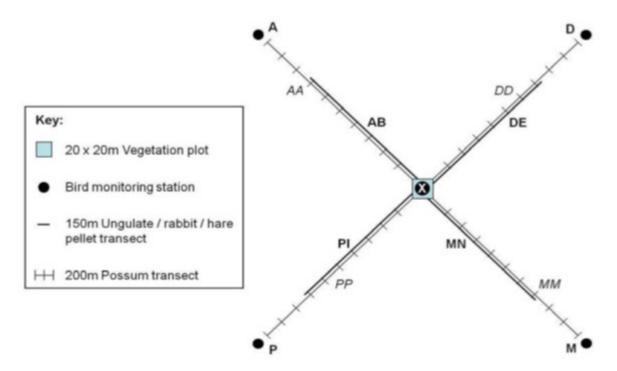


Figure 3: Monitoring layout for vegetation, pests and birds at each monitoring point.

Figure 4: Example of a plot layout in a production landscape.

Methods Page 9 of 40

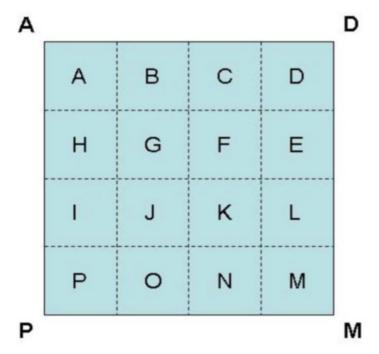


Figure 5: Outline of $20m \times 20$ m vegetation plot, illustrating the labelling system used to identify each corner of the plot and each of the 16 ($5m \times 5m$) subplots within it.

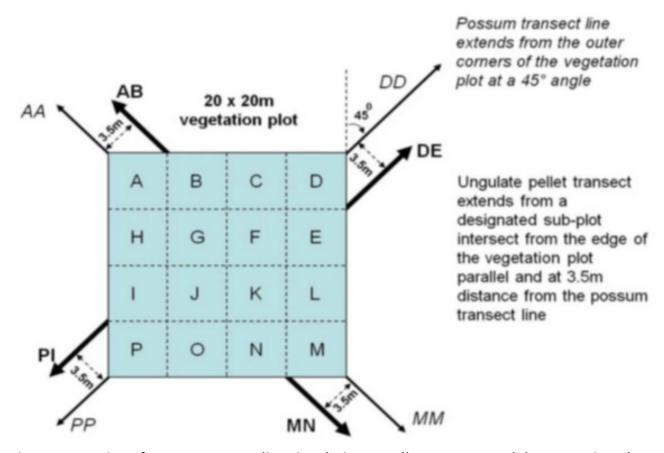


Figure 6: Location of possum transect lines in relation to pellet transects and the vegetation plot layout.

Methods Page 10 of 40

Results

Each results section presents maps of monitoring results and full tabulated data are available in the <u>Appendix data tables</u> section. Gaps in the sampling grid on maps could be for Lake Wairarapa, access being refused to some plots on private land, and plots being decommissioned; see the methods section for monitoring details.

Vegetation monitoring of indigenous vascular plant species

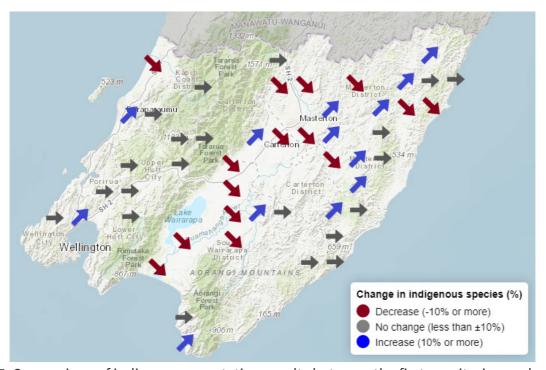


Figure 7: Comparison of indigenous vegetation results between the first monitoring cycle, years 1 to 5 and the second current monitoring cycle, years 6 to 10. Increases and decreases are shown by the arrows on the map when absolute change in percentage of indigenous species is greater than 10%.

Results Page 11 of 40

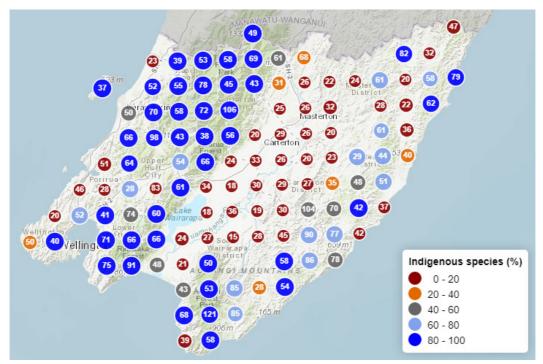


Figure 8: Indigenous vegetation results from the first monitoring cycle, years 1 to 5. Darker shades of blue indicate more coverage by indigenous species than exotic, while darker shades of red indicate predominantly exotic coverage. The number of different species recorded are shown as text over each site with the size of the circles scaled proportionally. Higher numbers of species imply more vegetative biodiversity in that monitoring area.

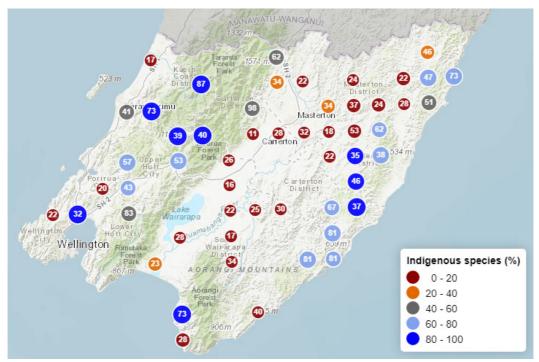


Figure 9: Indigenous vegetation results from the second monitoring cycle, years 6 to 10. Darker shades of blue indicate more coverage by indigenous species than exotic, while darker shades of red indicate predominantly exotic coverage. The number of different species recorded are shown as text over each site with the size of the circles scaled proportionally. Higher numbers of species imply more vegetative biodiversity in that monitoring area.

Results Page 12 of 40

Monitoring of indigenous bird species

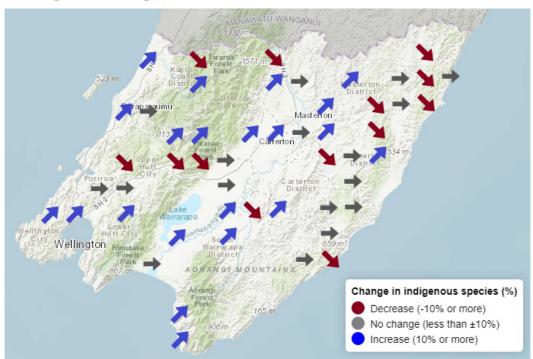


Figure 10: Comparison of indigenous bird results between the first monitoring cycle, years 1 to 5 and the second current monitoring cycle, years 6 to 10. Increases and decreases are shown by the arrows on the map when absolute change in percentage of indigenous species is greater than 10%.

Results Page 13 of 40

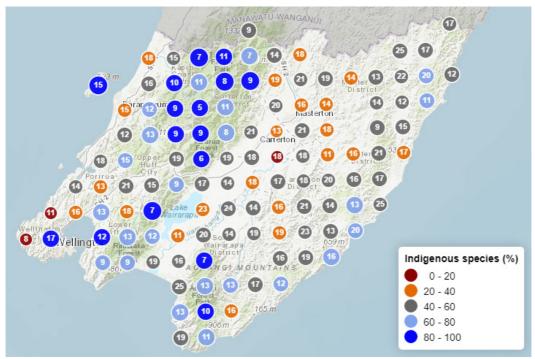


Figure 11: Indigenous bird results from the first monitoring cycle, years 1 to 5. Darker shades of blue indicate higher proportions of indigenous birds than exotic, while darker shades of red indicate predominantly exotic birds. The number of different species recorded are shown as text over each site with the size of the circles scaled proportionally. Higher numbers of species imply more bird biodiversity in that monitoring area.

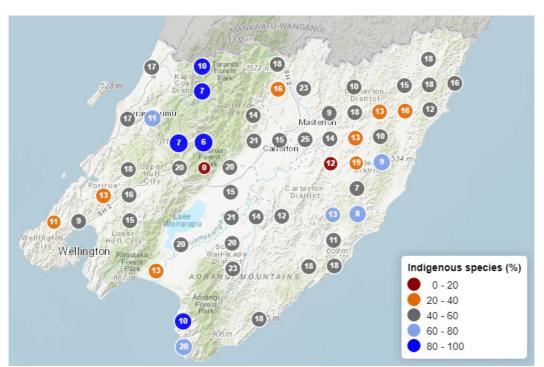


Figure 12: Indigenous bird results from the second monitoring cycle, years 6 to 10. Darker shades of blue indicate higher proportions of indigenous birds than exotic, while darker shades of red indicate predominantly exotic birds. The number of different species recorded are shown as text over each site with the size of the circles scaled proportionally. Higher numbers of species imply more bird biodiversity in that monitoring area.

Results Page 14 of 40

Monitoring of possum density

Figure 13: Comparison of possum density results between the first monitoring cycle, years 1 to 5 and the second current monitoring cycle, years 6 to 10. Increases and decreases are shown by the arrows on the map when possum density classifications change.

Results Page 15 of 40

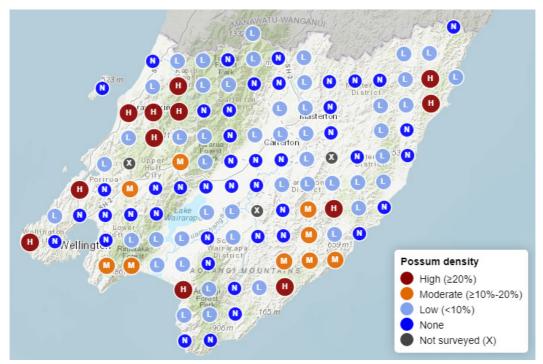


Figure 14: Possum density results from the first monitoring cycle, years 1 to 5. Shades of blue indicate low numbers or no possums recorded, while shades of red indicate moderate to high densities of possums in that monitoring area. Site circles are scaled by relative density and the first letter of each density category overlayed as text.

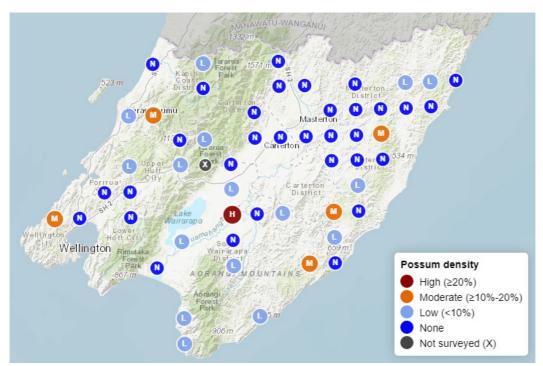


Figure 15: Possum density results from the second monitoring cycle, years 6 to 10. Shades of blue indicate low numbers or no possums recorded, while shades of red indicate moderate to high densities of possums in that monitoring area. Site circles are scaled by relative density and the first letter of each density category overlayed as text.

Results Page 16 of 40

Monitoring of ungulates & lagomorphs

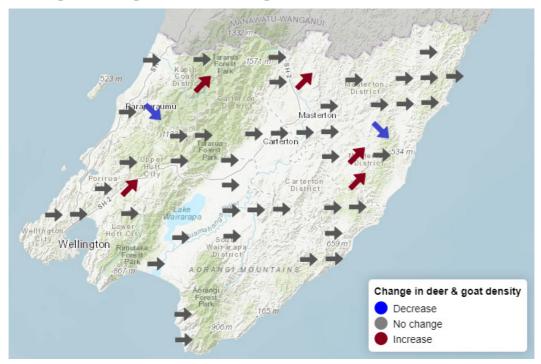


Figure 16: Comparison of deer & goat density results between the first monitoring cycle, years 1 to 5 and the second current monitoring cycle, years 6 to 10. Increases and decreases are shown by the arrows on the map when deer & goat density classifications change.

Results Page 17 of 40

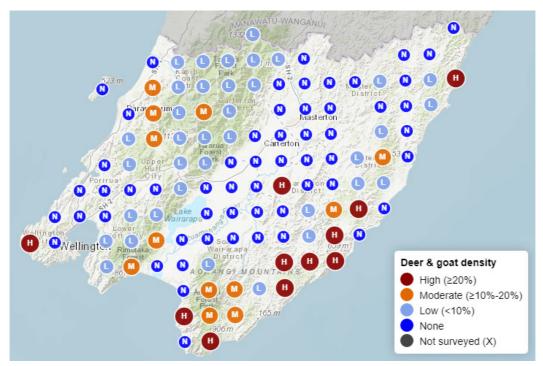


Figure 17: Deer & goat density results from the first monitoring cycle, years 1 to 5. Shades of blue indicate low numbers or no deer and goat present, while shades of red indicate moderate to high densities of deer and goat in that monitoring area. Site circles are scaled by relative density and the first letter of each density category overlayed as text.

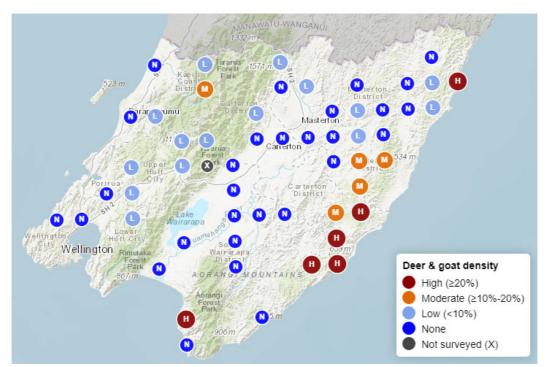


Figure 18: Deer & goat density results from the second monitoring cycle, years 6 to 10. Shades of blue indicate low numbers or no deer and goat present, while shades of red indicate moderate to high densities of deer and goat in that monitoring area. Site circles are scaled by relative density and the first letter of each density category overlayed as text.

Results Page 18 of 40

Appendix

Monitoring details

Table A1: Monitoring site information. Values in the columns Years 1-5 and Years 6-10 indicate the year that plot was sampled in the first or second monitoring cycle respectively. Landcover classifications are obtained from Land Use and Carbon Accounting System (LUCAS) surveys.

Plot ID	Years 1-5	Years 6-10	Champion	General landcover	Specific landcover
CG101	4	To be sampled	LUCAS	Scrubland	Exotic scrubland
CH100	1	6	GWRC	Grassland	Exotic grassland
CH101	5	To be sampled	GWRC	Bare or artificial surfaces	Urban
CI100	3	8	GWRC	Grassland	Exotic grassland
CI99	1	Decommissioned (R)	GWRC	Bare or artificial surfaces	Urban
CJ100	5	To be sampled	GWRC	Bare or artificial surfaces	Urban
CJ101	5	To be sampled	LUCAS	Forestland	Indigenous forestland
CJ102	3	To be sampled	DOC	Forestland	Indigenous forestland
CJ95	5	To be sampled	DOC	Forestland	Indigenous forestland
CJ98	5	To be sampled	GWRC	Grassland	Exotic grassland
CJ99	3	8	GWRC	Grassland	Exotic grassland
CK100	3	8	GWRC	Grassland	Exotic grassland
CK101	4	To be sampled	LUCAS	Forestland	Indigenous forestland
CK102	3	To be sampled	DOC	Forestland	Indigenous forestland
CK96	1	6	GWRC	Forestland	Exotic forestland
CK97	4	To be sampled	LUCAS	Forestland	Indigenous forestland
CK98	1	6	LUCAS	Forestland	Indigenous forestland
CK99	2	7	GWRC	Bare or artificial surfaces	Urban
CL100	3	To be sampled	DOC	Forestland	Indigenous forestland
CL101	4	To be sampled	LUCAS	Forestland	Indigenous forestland
CL102	2	7	DOC	Other vegetation	Other indigenous vegetation
CL94	3	8	GWRC	Grassland	Exotic grassland
CL95	4	To be sampled	GWRC	Forestland	Exotic forestland
CL96	1	6	DOC/LUCAS	Forestland	Indigenous forestland
CL97	5	To be sampled	LUCAS	Forestland	Indigenous forestland
CL98	Access denied (AD)	To be sampled	LUCAS	Scrubland	Indigenous scrubland
CL99	5	To be sampled	LUCAS	Grassland	Exotic grassland
CM101	1	6	GWRC	Grassland	Exotic grassland
CM102	4	To be sampled	GWRC	Grassland	Exotic grassland
CM103	2	To be sampled	DOC	Grassland	Exotic grassland
CM104	1	6	DOC/LUCAS	Scrubland	Indigenous scrubland
CM105	3	8	GWRC	Grassland	Exotic grassland
CM94	4	To be sampled	GWRC	Forestland	Exotic forestland
CM95	5	To be sampled	LUCAS	Forestland	Indigenous forestland
CM96	4	To be sampled	DOC	Forestland	Indigenous forestland
CM97	2	7	LUCAS	Forestland	Indigenous forestland
CM98	2	7	LUCAS	Scrubland	Exotic scrubland

Appendix Page 19 of 40

Plot ID	Years 1-5	Years 6-10	Champion	General landcover	Specific landcover
CM99	4	To be sampled	DOC	Forestland	Indigenous forestland
CN100	4	To be sampled	GWRC	Grassland	Exotic grassland
CN101	5	To be sampled	GWRC	Grassland	Exotic grassland
CN102	4	To be sampled	DOC	Forestland	Indigenous forestland
CN103	3	To be sampled	DOC	Forestland	Indigenous forestland
CN104	3	To be sampled	DOC	Forestland	Indigenous forestland
CN105	4	To be sampled	DOC	Forestland	Indigenous forestland
CN94	2	7	DOC	Forestland	Indigenous forestland
CN95	1	6	DOC	Forestland	Indigenous forestland
CN96	3	To be sampled	DOC	Scrubland	Indigenous scrubland
CN97	2	7	DOC	Forestland	Indigenous forestland
CN98	2	6	DOC/LUCAS	Forestland	Indigenous forestland
CN99	5	To be sampled	GWRC	Bare or artificial surfaces	Urban
CO100	3	8	GWRC	Bare or artificial surfaces	Water, snow, and ice
CO101	1	6	GWRC	Grassland	Exotic grassland
CO102	Access denied (AD)	6	GWRC	Grassland	Exotic grassland
CO103	5	To be sampled	LUCAS	Forestland	Exotic forestland
CO104	4	To be sampled	GWRC	Scrubland	Indigenous scrubland
CO94	5	To be sampled	DOC	Forestland	Indigenous forestland
CO95	3	To be sampled	DOC	Forestland	Indigenous forestland
CO96	5	To be sampled	DOC	Forestland	Indigenous forestland
CO97	4	To be sampled	DOC	Forestland	Indigenous forestland
CO98	2	7	GWRC	Grassland	Exotic grassland
CO99	3	8	GWRC	Grassland	Exotic grassland
CP100	1	6	GWRC	Grassland	Exotic grassland
CP101	4	To be sampled	GWRC	Grassland	Exotic grassland
CP102	Access denied (AD)	Access denied (AD)	GWRC	Grassland	Exotic grassland
CP103	5	To be sampled	GWRC	Grassland	Exotic grassland
CP104	Access denied (AD)	7	GWRC	Bare or artificial surfaces	Water, snow, and ice
CP93	5	To be sampled	DOC	Scrubland	Indigenous scrubland
CP94	3	To be sampled	DOC	Forestland	Indigenous forestland
CP95	5	To be sampled	DOC	Forestland	Indigenous forestland
CP96	Access denied (AD)	7	LUCAS	Scrubland	Indigenous scrubland
CP97	2	7	GWRC	Grassland	Exotic grassland
CP98	5	To be sampled	GWRC	Grassland	Exotic grassland
CP99	5	To be sampled	GWRC	Grassland	Exotic grassland
CQ100	3	8	GWRC	Grassland	Exotic grassland
CQ101	5	To be sampled	GWRC	Grassland	Exotic grassland
CQ102	5	To be sampled	LUCAS	Scrubland	Indigenous scrubland
CQ103	4	To be sampled	LUCAS	Forestland	Indigenous forestland
CQ94	3	8	LUCAS	Scrubland	Indigenous scrubland
CQ95	2	7	GWRC	Grassland	Exotic grassland
CQ96	4	To be sampled	GWRC	Grassland	Exotic grassland
CQ97	2	7	GWRC	Grassland	Exotic grassland
CQ98	4	To be sampled	GWRC	Grassland	Exotic grassland
CQ99	5	To be sampled	GWRC	Grassland	Exotic grassland
CR100	5	To be sampled	LUCAS	Forestland	Indigenous forestland

Appendix Page 20 of 40

Plot ID	Years 1-5	Years 6-10	Champion	General landcover	Specific landcover
CR101	4	To be sampled	GWRC	Bare or artificial surfaces	Water, snow, and ice
CR102	1	6	LUCAS	Scrubland	Indigenous scrubland
CR94	4	To be sampled	GWRC	Forestland	Exotic forestland
CR95	1	6	GWRC	Grassland	Exotic grassland
CR96	4	To be sampled	GWRC	Grassland	Exotic grassland
CR97	2	7	GWRC	Grassland	Exotic grassland
CR98	5	To be sampled	GWRC	Grassland	Exotic grassland
CR99	5	To be sampled	GWRC	Grassland	Exotic grassland
CS100	3	8	LUCAS	Forestland	Indigenous forestland
CS101	3	8	LUCAS	Scrubland	Indigenous scrubland
CS102	1	6	GWRC	Forestland	Exotic forestland
CS95	4	To be sampled	GWRC	Grassland	Exotic grassland
CS96	3	8	GWRC	Grassland	Exotic grassland
CS97	3	8	GWRC	Grassland	Exotic grassland
CS98	1	6	GWRC	Grassland	Exotic grassland
CS99	4	To be sampled	GWRC	Grassland	Exotic grassland
CT100	3	8	LUCAS	Forestland	Indigenous forestland
CT101	5	To be sampled	GWRC	Grassland	Exotic grassland
CT95	3	8	GWRC	Grassland	Exotic grassland
CT96	Missed in year 1	6	LUCAS	Forestland	Indigenous forestland
CT97	Access denied (AD)	7	GWRC	Forestland	Exotic forestland
CT98	2	7	GWRC	Forestland	Exotic forestland
СТ99	2	7	GWRC	Forestland	Exotic forestland
CU100	4	To be sampled	GWRC	Grassland	Exotic grassland
CU94	Access denied (AD)	Access denied (AD)	GWRC	Grassland	Exotic grassland
CU95	5	To be sampled	LUCAS	Forestland	Exotic forestland
CU96	2	7	GWRC	Grassland	Exotic grassland
CU97	3	8	GWRC	Forestland	Exotic forestland
CU98	3	8	GWRC	Forestland	Exotic forestland
CU99	5	To be sampled	GWRC	Forestland	Exotic forestland
CV94	4	To be sampled	GWRC	Forestland	Indigenous forestland
CV95	2	7	GWRC	Grassland	Exotic grassland
CV96	1	6	GWRC	Grassland	Exotic grassland
CV97	5	To be sampled	GWRC	Grassland	Exotic grassland
CV98	4	To be sampled	GWRC	Grassland	Exotic grassland
CW93	Access denied (AD)	To be sampled	GWRC	Grassland	Exotic grassland
CW94	2	7	GWRC	Grassland	Exotic grassland
CW95	1	6	GWRC	Forestland	Exotic forestland
CW96	1	6	GWRC	Forestland	Exotic forestland
CX93	5	To be sampled	GWRC	Grassland	Exotic grassland
CX94	Access denied (AD)	Access denied (AD)	GWRC	Grassland	Exotic grassland
CX95	1	6	GWRC	Bare or artificial surfaces	Natural bare ground

Appendix Page 21 of 40

Data tables

See the respective <u>methods</u> and <u>results</u> sections for more information on each of the following data tables.

Vegetation monitoring

Table A2: Number and % of vascular plant species recorded at each plot. When either cycle's value is zero an approximate % change may be given and marked with an asterisk (*).

Plot ID	Cycle	Year/s	Total species	Indigenous species	Exotic species	Unknown species
CG101	1-5	4	50	15 (30%)	35 (70%)	0 (0%)
CH100	1-5	1	20	0 (0%)	20 (100%)	0 (0%)
CH100	6-10	6	22	0 (0%)	22 (100%)	0 (0%)
CH100	Change	1 and 6	20 to 22 (10.0%)	0 to 0 (0.0%*)	20 to 22 (10.0%)	0 to 0 (0.0%*)
CH101	1-5	5	40	38 (95%)	2 (5%)	0 (0%)
CI100	1-5	3	52	38 (73%)	14 (27%)	0 (0%)
CI100	6-10	8	32	28 (88%)	4 (13%)	0 (0%)
CI100	Change	3 and 8	52 to 32 (-38.5%)	38 to 28 (-26.3%)	14 to 4 (-71.4%)	0 to 0 (0.0%*)
CI99	1-5	1	46	5 (11%)	41 (89%)	0 (0%)
CJ100	1-5	5	41	37 (90%)	4 (10%)	0 (0%)
CJ101	1-5	5	71	71 (100%)	0 (0%)	0 (0%)
CJ102	1-5	3	75	73 (97%)	2 (3%)	0 (0%)
CJ95	1-5	5	37	37 (100%)	0 (0%)	0 (0%)
CJ98	1-5	5	51	9 (18%)	42 (82%)	0 (0%)
CJ99	1-5	3	28	0 (0%)	27 (96%)	1 (4%)
CJ99	6-10	8	20	0 (0%)	20 (100%)	0 (0%)
CJ99	Change	3 and 8	28 to 20 (-28.6%)	0 to 0 (0.0%*)	27 to 20 (-25.9%)	1 to 0 (-100.0%*)
CK100	1-5	3	74	42 (57%)	32 (43%)	0 (0%)
CK100	6-10	8	83	45 (54%)	38 (46%)	0 (0%)
CK100	Change	3 and 8	74 to 83 (12.2%)	42 to 45 (7.1%)	32 to 38 (18.8%)	0 to 0 (0.0%*)
CK101	1-5	4	66	66 (100%)	0 (0%)	0 (0%)
CK102	1-5	3	91	89 (98%)	2 (2%)	0 (0%)
CK96	1-5	1	50	24 (48%)	26 (52%)	0 (0%)
CK96	6-10	6	41	23 (56%)	18 (44%)	0 (0%)
CK96	Change	1 and 6	50 to 41 (-18.0%)	24 to 23 (-4.2%)	26 to 18 (-30.8%)	0 to 0 (0.0%*)
CK97	1-5	4	66	65 (98%)	1 (2%)	0 (0%)
CK98	1-5	1	64	55 (86%)	8 (13%)	1 (2%)
CK98	6-10	6	57	45 (79%)	12 (21%)	0 (0%)
CK98	Change	1 and 6	64 to 57 (-10.9%)	55 to 45 (-18.2%)	8 to 12 (50.0%)	1 to 0 (-100.0%*)
CK99	1-5	2	28	18 (64%)	10 (36%)	0 (0%)
CK99	6-10	7	43	26 (60%)	17 (40%)	0 (0%)
CK99	Change	2 and 7	28 to 43 (53.6%)	18 to 26 (44.4%)	10 to 17 (70.0%)	0 to 0 (0.0%*)
CL100	1-5	3	60	60 (100%)	0 (0%)	0 (0%)
CL101	1-5	4	66	66 (100%)	0 (0%)	0 (0%)
CL102	1-5	2	48	19 (40%)	27 (56%)	2 (4%)

Appendix Page 22 of 40

Plot ID	Cycle	Year/s	Total species	Indigenous species	Exotic species	Unknown species
CL102	Change	2 and 8	48 to 23 (-52.1%)	19 to 7 (-63.2%)	27 to 16 (-40.7%)	2 to 0 (-100.0%*)
CL94	1-5	3	23	2 (9%)	20 (87%)	1 (4%)
CL94	6-10	8	17	1 (6%)	16 (94%)	0 (0%)
CL94	Change	3 and 8	23 to 17 (-26.1%)	2 to 1 (-50.0%)	20 to 16 (-20.0%)	1 to 0 (-100.0%*)
CL95	1-5	4	52	44 (85%)	8 (15%)	0 (0%)
CL96	1-5	1	70	70 (100%)	0 (0%)	0 (0%)
CL96	6-10	6	73	70 (96%)	1 (1%)	2 (3%)
CL96	Change	1 and 6	70 to 73 (4.3%)	70 to 70 (0.0%)	0 to 1 (100.0%*)	0 to 2 (200.0%*)
CL97	1-5	5	98	80 (82%)	18 (18%)	0 (0%)
CL99	1-5	5	83	6 (7%)	77 (93%)	0 (0%)
CM101	1-5	1	24	3 (13%)	21 (88%)	0 (0%)
CM101	6-10	6	28	1 (4%)	27 (96%)	0 (0%)
CM101	Change	1 and 6	24 to 28 (16.7%)	3 to 1 (-66.7%)	21 to 27 (28.6%)	0 to 0 (0.0%*)
CM102	1-5	4	21	0 (0%)	21 (100%)	0 (0%)
CM103	1-5	2	43	20 (47%)	23 (53%)	0 (0%)
CM104	1-5	1	68	66 (97%)	1 (1%)	1 (1%)
CM104	6-10	6	73	67 (92%)	5 (7%)	1 (1%)
CM104	Change	1 and 6	68 to 73 (7.4%)	66 to 67 (1.5%)	1 to 5 (400.0%)	1 to 1 (0.0%)
CM105	1-5	3	39	6 (15%)	32 (82%)	1 (3%)
CM105	6-10	8	28	5 (18%)	23 (82%)	0 (0%)
CM105	Change	3 and 8	39 to 28 (-28.2%)	6 to 5 (-16.7%)	32 to 23 (-28.1%)	1 to 0 (-100.0%*)
CM94	1-5	4	39	36 (92%)	3 (8%)	0 (0%)
CM95	1-5	5	55	55 (100%)	0 (0%)	0 (0%)
CM96	1-5	4	58	58 (100%)	0 (0%)	0 (0%)
CM97	1-5	2	43	43 (100%)	0 (0%)	0 (0%)
CM97	6-10	7	39	39 (100%)	0 (0%)	0 (0%)
CM97	Change	2 and 7	43 to 39 (-9.3%)	43 to 39 (-9.3%)	0 to 0 (0.0%*)	0 to 0 (0.0%*)
CM98	1-5	2	54	34 (63%)	20 (37%)	0 (0%)
CM98	6-10	7	53	36 (68%)	17 (32%)	0 (0%)
CM98	Change	2 and 7	54 to 53 (-1.9%)	34 to 36 (5.9%)	20 to 17 (-15.0%)	0 to 0 (0.0%*)
CM99	1-5	4	61	61 (100%)	0 (0%)	0 (0%)
CN100	1-5	4	18	0 (0%)	18 (100%)	0 (0%)
CN101	1-5	5	27	1 (4%)	25 (93%)	1 (4%)
CN102	1-5	4	50	50 (100%)	0 (0%)	0 (0%)
CN103	1-5	3	53	50 (94%)	3 (6%)	0 (0%)
CN104	1-5	3	121	103 (85%)	16 (13%)	2 (2%)
CN105	1-5	4	58	55 (95%)	3 (5%)	0 (0%)
CN94	1-5	2	53	53 (100%)	0 (0%)	0 (0%)
CN95	1-5	1	78	77 (99%)	1 (1%)	0 (0%)
CN95	6-10	6	87	86 (99%)	0 (0%)	1 (1%)
CN95	Change	1 and 6	78 to 87 (11.5%)	77 to 86 (11.7%)	1 to 0 (-100.0%*)	0 to 1 (100.0%*)
CN95	1-5	3	78 (0 87 (11.5%)	72 (100%)	0 (0%)	0 (0%)
CN96	1-5	2	38	38 (100%)	0 (0%)	0 (0%)
CN97	6-10	7	40	40 (100%)	0 (0%)	0 (0%)
CN97					0 (0%) 0 to 0 (0.0%*)	• •
	Change	2 and 7	38 to 40 (5.3%)	38 to 40 (5.3%)	·	0 to 0 (0.0%*)
CN98	1-5	2	66	66 (100%)	0 (0%)	0 (0%)
CN99	1-5	5	34	0 (0%)	34 (100%)	0 (0%)

Appendix Page 23 of 40

Plot ID	Cycle	Year/s	Total species	Indigenous species	Exotic species	Unknown species
CO100	1-5	3	36	2 (6%)	34 (94%)	0 (0%)
CO100	6-10	8	22	0 (0%)	22 (100%)	0 (0%)
CO100	Change	3 and 8	36 to 22 (-38.9%)	2 to 0 (-100.0%*)	34 to 22 (-35.3%)	0 to 0 (0.0%*)
CO101	1-5	1	15	1 (7%)	14 (93%)	0 (0%)
CO101	6-10	6	17	0 (0%)	17 (100%)	0 (0%)
CO101	Change	1 and 6	15 to 17 (13.3%)	1 to 0 (-100.0%*)	14 to 17 (21.4%)	0 to 0 (0.0%*)
CO102	6-10	6	34	4 (12%)	30 (88%)	0 (0%)
CO103	1-5	5	85	55 (65%)	30 (35%)	0 (0%)
CO104	1-5	4	85	53 (62%)	32 (38%)	0 (0%)
CO94	1-5	5	58	58 (100%)	0 (0%)	0 (0%)
CO95	1-5	3	45	45 (100%)	0 (0%)	0 (0%)
CO96	1-5	5	106	97 (92%)	9 (8%)	0 (0%)
CO97	1-5	4	56	56 (100%)	0 (0%)	0 (0%)
CO98	1-5	2	24	1 (4%)	23 (96%)	0 (0%)
CO98	6-10	7	26	0 (0%)	26 (100%)	0 (0%)
CO98	Change	2 and 7	24 to 26 (8.3%)	1 to 0 (-100.0%*)	23 to 26 (13.0%)	0 to 0 (0.0%*)
CO99	1-5	3	18	1 (6%)	17 (94%)	0 (0%)
CO99	6-10	8	16	0 (0%)	16 (100%)	0 (0%)
CO99	Change	3 and 8	18 to 16 (-11.1%)	1 to 0 (-100.0%*)	17 to 16 (-5.9%)	0 to 0 (0.0%*)
CP100	1-5	1	19	0 (0%)	19 (100%)	0 (0%)
CP100	6-10	6	25	1 (4%)	24 (96%)	0 (0%)
CP100	Change	1 and 6	19 to 25 (31.6%)	0 to 1 (100.0%*)	19 to 24 (26.3%)	0 to 0 (0.0%*)
CP101	1-5	4	28	2 (7%)	26 (93%)	0 (0%)
CP103	1-5	5	28	9 (32%)	19 (68%)	0 (0%)
CP104	6-10	7	40	0 (0%)	39 (98%)	1 (3%)
CP93	1-5	5	49	49 (100%)	0 (0%)	0 (0%)
CP94	1-5	3	69	69 (100%)	0 (0%)	0 (0%)
CP95	1-5	5	43	43 (100%)	0 (0%)	0 (0%)
CP96	6-10	7	98	58 (59%)	40 (41%)	0 (0%)
CP97	1-5	2	20	1 (5%)	19 (95%)	0 (0%)
CP97	6-10	7	11	1 (9%)	10 (91%)	0 (0%)
CP97	Change	2 and 7	20 to 11 (-45.0%)	1 to 1 (0.0%)	19 to 10 (-47.4%)	0 to 0 (0.0%*)
CP98	1-5	5	33	1 (3%)	32 (97%)	0 (0%)
CP99	1-5	5	30	2 (7%)	28 (93%)	0 (0%)
CQ100	1-5	3	30	2 (7%)	28 (93%)	0 (0%)
CQ100	6-10	8	30	2 (7%)	28 (93%)	0 (0%)
CQ100	Change	3 and 8	30 to 30 (0.0%)	2 to 2 (0.0%)	28 to 28 (0.0%)	0 to 0 (0.0%*)
CQ101	1-5	5	45	4 (9%)	41 (91%)	0 (0%)
CQ101	1-5	5	58	55 (95%)	3 (5%)	0 (0%)
CQ102	1-5	4	54	51 (94%)	3 (6%)	0 (0%)
CQ103	1-5	3	61	33 (54%)	27 (44%)	1 (2%)
CQ94	6-10	8	62	34 (55%)	28 (45%)	0 (0%)
CQ94	Change	3 and 8	61 to 62 (1.6%)	33 to 34 (3.0%)	27 to 28 (3.7%)	1 to 0 (-100.0%*)
CQ94	1-5	2	31	8 (26%)	23 (74%)	0 (0%)
CQ95	6-10	7	34	7 (21%)	27 (79%)	0 (0%)
CQ95	Change	2 and 7	31 to 34 (9.7%)	8 to 7 (-12.5%)	27 (79%) 23 to 27 (17.4%)	0 to 0 (0.0%*)
ccys	1-5	2 and 7	25	2 (8%)	23 (92%)	0 (0%)

Appendix Page 24 of 40

Plot ID	Cycle	Year/s	Total species	Indigenous species	Exotic species	Unknown species
CQ97	1-5	2	29	1 (3%)	28 (97%)	0 (0%)
CQ97	6-10	7	28	0 (0%)	28 (100%)	0 (0%)
CQ97	Change	2 and 7	29 to 28 (-3.4%)	1 to 0 (-100.0%*)	28 to 28 (0.0%)	0 to 0 (0.0%*)
CQ98	1-5	4	26	0 (0%)	26 (100%)	0 (0%)
CQ99	1-5	5	29	1 (3%)	28 (97%)	0 (0%)
CR100	1-5	5	104	59 (57%)	45 (43%)	0 (0%)
CR101	1-5	4	90	67 (74%)	23 (26%)	0 (0%)
CR102	1-5	1	86	60 (70%)	25 (29%)	1 (1%)
CR102	6-10	6	81	61 (75%)	20 (25%)	0 (0%)
CR102	Change	1 and 6	86 to 81 (-5.8%)	60 to 61 (1.7%)	25 to 20 (-20.0%)	1 to 0 (-100.0%*)
CR94	1-5	4	68	19 (28%)	49 (72%)	0 (0%)
CR95	1-5	1	26	2 (8%)	24 (92%)	0 (0%)
CR95	6-10	6	22	1 (5%)	21 (95%)	0 (0%)
CR95	Change	1 and 6	26 to 22 (-15.4%)	2 to 1 (-50.0%)	24 to 21 (-12.5%)	0 to 0 (0.0%*)
CR96	1-5	4	26	0 (0%)	26 (100%)	0 (0%)
CR97	1-5	2	26	2 (8%)	24 (92%)	0 (0%)
CR97	6-10	7	32	0 (0%)	31 (97%)	1 (3%)
CR97	Change	2 and 7	26 to 32 (23.1%)	2 to 0 (-100.0%*)	24 to 31 (29.2%)	0 to 1 (100.0%*)
CR98	1-5	5	20	1 (5%)	19 (95%)	0 (0%)
CR99	1-5	5	27	1 (4%)	26 (96%)	0 (0%)
CS100	1-5	2	70	38 (54%)	31 (44%)	1 (1%)
CS100	6-10	8	67	40 (60%)	27 (40%)	0 (0%)
CS100	Change	2 and 8	70 to 67 (-4.3%)	38 to 40 (5.3%)	31 to 27 (-12.9%)	1 to 0 (-100.0%*)
CS101	1-5	3	77	50 (65%)	26 (34%)	1 (1%)
CS101	6-10	8	81	53 (65%)	28 (35%)	0 (0%)
CS101	Change	3 and 8	77 to 81 (5.2%)	50 to 53 (6.0%)	26 to 28 (7.7%)	1 to 0 (-100.0%*)
CS102	1-5	1	78	45 (58%)	33 (42%)	0 (0%)
CS102	6-10	6	81	50 (62%)	31 (38%)	0 (0%)
CS102	Change	1 and 6	78 to 81 (3.8%)	45 to 50 (11.1%)	33 to 31 (-6.1%)	0 to 0 (0.0%*)
CS95	1-5	4	22	0 (0%)	22 (100%)	0 (0%)
CS96	1-5	3	32	5 (16%)	26 (81%)	1 (3%)
CS96	6-10	8	34	7 (21%)	27 (79%)	0 (0%)
CS96	Change	3 and 8	32 to 34 (6.3%)	5 to 7 (40.0%)	26 to 27 (3.8%)	1 to 0 (-100.0%*)
CS97	1-5	3	20	1 (5%)	19 (95%)	0 (0%)
CS97	6-10	8	18	1 (6%)	17 (94%)	0 (0%)
CS97	Change	3 and 8	20 to 18 (-10.0%)	1 to 1 (0.0%)	19 to 17 (-10.5%)	0 to 0 (0.0%*)
CS98	1-5	1	23	2 (9%)	21 (91%)	0 (0%)
CS98	6-10	6	22	1 (5%)	21 (95%)	0 (0%)
CS98	Change	1 and 6	23 to 22 (-4.3%)	2 to 1 (-50.0%)	21 to 21 (0.0%)	0 to 0 (0.0%*)
CS99	1-5	4	35	7 (20%)	28 (80%)	0 (0%)
CT100	1-5	3	42	42 (100%)	0 (0%)	0 (0%)
CT100	6-10	8	37	37 (100%)	0 (0%)	0 (0%)
CT100	Change	3 and 8	42 to 37 (-11.9%)	42 to 37 (-11.9%)	0 to 0 (0.0%*)	0 to 0 (0.0%*)
CT101	1-5	5	42	3 (7%)	39 (93%)	0 (0%)
CT95	1-5	3	24	2 (8%)	21 (88%)	1 (4%)
CT95	6-10	8	24	1 (4%)	22 (92%)	1 (4%)
CT95	Change	3 and 8	24 to 24 (0.0%)	2 to 1 (-50.0%)	21 to 22 (4.8%)	1 to 1 (0.0%)

Appendix Page 25 of 40

Plot ID	Cycle	Year/s	Total species	Indigenous species	Exotic species	Unknown species
CT96	6-10	6	37	5 (14%)	32 (86%)	0 (0%)
CT97	6-10	7	53	9 (17%)	44 (83%)	0 (0%)
CT98	1-5	2	29	20 (69%)	9 (31%)	0 (0%)
CT98	6-10	7	35	28 (80%)	7 (20%)	0 (0%)
CT98	Change	2 and 7	29 to 35 (20.7%)	20 to 28 (40.0%)	9 to 7 (-22.2%)	0 to 0 (0.0%*)
CT99	1-5	2	48	27 (56%)	21 (44%)	0 (0%)
CT99	6-10	7	46	37 (80%)	9 (20%)	0 (0%)
CT99	Change	2 and 7	48 to 46 (-4.2%)	27 to 37 (37.0%)	21 to 9 (-57.1%)	0 to 0 (0.0%*)
CU100	1-5	4	37	2 (5%)	35 (95%)	0 (0%)
CU95	1-5	5	61	46 (75%)	15 (25%)	0 (0%)
CU96	1-5	2	28	2 (7%)	26 (93%)	0 (0%)
CU96	6-10	7	24	4 (17%)	20 (83%)	0 (0%)
CU96	Change	2 and 7	28 to 24 (-14.3%)	2 to 4 (100.0%)	26 to 20 (-23.1%)	0 to 0 (0.0%*)
CU97	1-5	3	61	37 (61%)	24 (39%)	0 (0%)
CU97	6-10	8	62	38 (61%)	24 (39%)	0 (0%)
CU97	Change	3 and 8	61 to 62 (1.6%)	37 to 38 (2.7%)	24 to 24 (0.0%)	0 to 0 (0.0%*)
CU98	1-5	3	44	30 (68%)	14 (32%)	0 (0%)
CU98	6-10	8	38	27 (71%)	11 (29%)	0 (0%)
CU98	Change	3 and 8	44 to 38 (-13.6%)	30 to 27 (-10.0%)	14 to 11 (-21.4%)	0 to 0 (0.0%*)
CU99	1-5	5	51	32 (63%)	19 (37%)	0 (0%)
CV94	1-5	4	82	67 (82%)	15 (18%)	0 (0%)
CV95	1-5	2	20	2 (10%)	18 (90%)	0 (0%)
CV95	6-10	7	22	4 (18%)	18 (82%)	0 (0%)
CV95	Change	2 and 7	20 to 22 (10.0%)	2 to 4 (100.0%)	18 to 18 (0.0%)	0 to 0 (0.0%*)
CV96	1-5	1	22	3 (14%)	19 (86%)	0 (0%)
CV96	6-10	6	28	3 (11%)	25 (89%)	0 (0%)
CV96	Change	1 and 6	22 to 28 (27.3%)	3 to 3 (0.0%)	19 to 25 (31.6%)	0 to 0 (0.0%*)
CV97	1-5	5	36	7 (19%)	29 (81%)	0 (0%)
CV98	1-5	4	40	8 (20%)	32 (80%)	0 (0%)
CW94	1-5	2	32	3 (9%)	29 (91%)	0 (0%)
CW94	6-10	7	46	12 (26%)	34 (74%)	0 (0%)
CW94	Change	2 and 7	32 to 46 (43.8%)	3 to 12 (300.0%)	29 to 34 (17.2%)	0 to 0 (0.0%*)
CW95	1-5	1	58	36 (62%)	22 (38%)	0 (0%)
CW95	6-10	6	47	32 (68%)	15 (32%)	0 (0%)
CW95	Change	1 and 6	58 to 47 (-19.0%)	36 to 32 (-11.1%)	22 to 15 (-31.8%)	0 to 0 (0.0%*)
CW96	1-5	1	62	54 (87%)	8 (13%)	0 (0%)
CW96	6-10	6	51	28 (55%)	23 (45%)	0 (0%)
CW96	Change	1 and 6	62 to 51 (-17.7%)	54 to 28 (-48.1%)	8 to 23 (187.5%)	0 to 0 (0.0%*)
CX93	1-5	5	47	9 (19%)	38 (81%)	0 (0%)
CX95	1-5	1	79	63 (80%)	16 (20%)	0 (0%)
CX95	6-10	6	73	58 (79%)	15 (21%)	0 (0%)
CX95	Change	1 and 6	79 to 73 (-7.6%)	63 to 58 (-7.9%)	16 to 15 (-6.2%)	0 to 0 (0.0%*)

Appendix Page 26 of 40

Bird monitoring

Table A3: Number and % of bird species recorded at each plot. When either cycle's value is zero an approximate % change may be given and marked with an asterisk (*).

Plot ID	Cycle	Year/s	Total species	Indigenous species	Exotic species
CG101	1-5	4	8	1 (13%)	7 (88%)
CH100	1-5	1	11	2 (18%)	9 (82%)
CH100	6-10	6	11	3 (27%)	8 (73%)
CH100	Change	1 and 6	11 to 11 (0.0%)	2 to 3 (50.0%)	9 to 8 (-11.1%)
CH101	1-5	5	17	15 (88%)	2 (12%)
CI100	1-5	3	16	6 (38%)	10 (63%)
CI100	6-10	8	9	5 (56%)	4 (44%)
CI100	Change	3 and 8	16 to 9 (-43.7%)	6 to 5 (-16.7%)	10 to 4 (-60.0%)
CI99	1-5	1	14	6 (43%)	8 (57%)
CJ100	1-5	5	13	9 (69%)	4 (31%)
CJ101	1-5	5	12	10 (83%)	2 (17%)
CJ102	1-5	3	9	6 (67%)	3 (33%)
CJ95	1-5	5	15	15 (100%)	0 (0%)
CJ98	1-5	5	18	8 (44%)	10 (56%)
CJ99	1-5	3	13	5 (38%)	8 (62%)
CJ99	6-10	8	13	5 (38%)	8 (62%)
CJ99	Change	3 and 8	13 to 13 (0.0%)	5 to 5 (0.0%)	8 to 8 (0.0%)
CK100	1-5	3	18	7 (39%)	11 (61%)
CK100	6-10	8	15	7 (47%)	8 (53%)
CK100	Change	3 and 8	18 to 15 (-16.7%)	7 to 7 (0.0%)	11 to 8 (-27.3%)
CK101	1-5	4	13	10 (77%)	3 (23%)
CK102	1-5	3	9	6 (67%)	3 (33%)
CK96	1-5	1	15	4 (27%)	11 (73%)
CK96	6-10	6	17	8 (47%)	9 (53%)
CK96	Change	1 and 6	15 to 17 (13.3%)	4 to 8 (100.0%)	11 to 9 (-18.2%)
CK97	1-5	4	12	7 (58%)	5 (42%)
CK98	1-5	1	15	10 (67%)	5 (33%)
CK98	6-10	6	18	8 (44%)	10 (66%)
CK98	Change	1 and 6	15 to 18 (20.0%)	10 to 8 (-20.0%)	5 to 10 (100.0%)
CK99	1-5	2	21	11 (52%)	10 (48%)
CK99	6-10	7	16	9 (56%)	7 (44%)
CK99	Change	2 and 7	21 to 16 (-23.8%)	11 to 9 (-18.2%)	10 to 7 (-30.0%)
CL100	1-5	3	7	7 (100%)	0 (0%)
CL101	1-5	4	12	8 (67%)	4 (33%)
CL102	1-5	2	19	8 (42%)	11 (58%)
CL102	6-10	7	13	5 (38%)	8 (62%)
CL102	Change	2 and 7	19 to 13 (-31.6%)	8 to 5 (-37.5%)	11 to 8 (-27.3%)
CL94	1-5	3	18	6 (33%)	12 (67%)
CL94	6-10	8	17	9 (53%)	8 (47%)
CL94	Change	3 and 8	18 to 17 (-5.6%)	6 to 9 (50.0%)	12 to 8 (-33.3%)

Appendix Page 27 of 40

Plot ID	Cycle	Year/s	Total species	Indigenous species	Exotic species
CL96	1-5	1	12	8 (67%)	4 (33%)
CL96	6-10	6	11	8 (73%)	3 (27%)
CL96	Change	1 and 6	12 to 11 (-8.3%)	8 to 8 (0.0%)	4 to 3 (-25.0%)
CL97	1-5	5	13	9 (69%)	4 (31%)
CL99	1-5	5	15	7 (47%)	8 (53%)
CM101	1-5	1	11	3 (27%)	8 (73%)
CM101	6-10	6	20	8 (40%)	12 (60%)
CM101	Change	1 and 6	11 to 20 (81.8%)	3 to 8 (166.7%)	8 to 12 (50.0%)
CM102	1-5	4	16	7 (44%)	9 (56%)
CM103	1-5	2	25	12 (48%)	13 (52%)
CM104	1-5	1	13	9 (69%)	4 (31%)
CM104	6-10	6	10	8 (80%)	2 (20%)
CM104	Change	1 and 6	13 to 10 (-23.1%)	9 to 8 (-11.1%)	4 to 2 (-50.0%)
CM105	1-5	3	19	9 (47%)	10 (53%)
CM105	6-10	8	20	13 (65%)	7 (35%)
CM105	Change	3 and 8	19 to 20 (5.3%)	9 to 13 (44.4%)	10 to 7 (-30.0%)
CM94	1-5	4	15	6 (40%)	9 (60%)
CM95	1-5	5	10	8 (80%)	2 (20%)
CM96	1-5	4	9	8 (89%)	1 (11%)
CM97	1-5	2	9	8 (89%)	1 (11%)
CM97	6-10	7	7	7 (100%)	0 (0%)
CM97	Change	2 and 7	9 to 7 (-22.2%)	8 to 7 (-12.5%)	1 to 0 (-100.0%*)
CM98	1-5	2	19	9 (47%)	10 (53%)
CM98	6-10	7	20	8 (40%)	12 (60%)
CM98	Change	2 and 7	19 to 20 (5.3%)	9 to 8 (-11.1%)	10 to 12 (20.0%)
CM99	1-5	4	9	6 (67%)	3 (33%)
CN100	1-5	4	23	9 (39%)	14 (61%)
CN101	1-5	5	20	10 (50%)	10 (50%)
CN102	1-5	4	7	6 (86%)	1 (14%)
CN103	1-5	3	13	10 (77%)	3 (23%)
CN104	1-5	3	10	8 (80%)	2 (20%)
CN105	1-5	4	11	8 (73%)	3 (27%)
CN94	1-5	2	7	7 (100%)	0 (0%)
CN94	6-10	7	10	8 (80%)	2 (20%)
CN94	Change	2 and 7	7 to 10 (42.9%)	7 to 8 (14.3%)	0 to 2 (200.0%*)
CN95	1-5	1	11	8 (73%)	3 (27%)
CN95	6-10	6	7	6 (86%)	1 (14%)
CN95	Change	1 and 6	11 to 7 (-36.4%)	8 to 6 (-25.0%)	3 to 1 (-66.7%)
CN96	1-5	3	5	4 (80%)	1 (20%)
CN97	1-5	2	9	8 (89%)	1 (11%)
CN97	6-10	7	6	6 (100%)	0 (0%)
CN97	Change	2 and 7	9 to 6 (-33.3%)	8 to 6 (-25.0%)	1 to 0 (-100.0%*)
CN98	1-5	2	6	5 (83%)	1 (17%)
CN98	6-10	6	0	0 (0%)	0 (0%)
CN98	Change	2 and 6	6 to 0 (-100.0%*)	5 to 0 (-100.0%*)	1 to 0 (-100.0%*)
CN99	1-5	5	17	8 (47%)	9 (53%)
CO100	1-5	3	24	12 (50%)	12 (50%)

Appendix Page 28 of 40

Plot ID	Cycle	Year/s	Total species	Indigenous species	Exotic species
CO100	6-10	8	21	12 (57%)	9 (43%)
CO100	Change	3 and 8	24 to 21 (-12.5%)	12 to 12 (0.0%)	12 to 9 (-25.0%)
CO101	1-5	1	14	6 (43%)	8 (57%)
CO101	6-10	6	20	10 (50%)	10 (50%)
CO101	Change	1 and 6	14 to 20 (42.9%)	6 to 10 (66.7%)	8 to 10 (25.0%)
CO102	6-10	6	23	10 (43%)	13 (57%)
CO103	1-5	5	13	8 (62%)	5 (38%)
CO104	1-5	4	16	6 (38%)	10 (63%)
CO94	1-5	5	11	9 (82%)	2 (18%)
CO95	1-5	3	8	8 (100%)	0 (0%)
CO96	1-5	5	11	8 (73%)	3 (27%)
CO97	1-5	4	8	6 (75%)	2 (25%)
CO98	1-5	2	19	8 (42%)	11 (58%)
CO98	6-10	7	20	9 (45%)	11 (55%)
CO98	Change	2 and 7	19 to 20 (5.3%)	8 to 9 (12.5%)	11 to 11 (0.0%)
CO99	1-5	3	14	6 (43%)	8 (57%)
CO99	6-10	8	15	6 (40%)	9 (60%)
CO99	Change	3 and 8	14 to 15 (7.1%)	6 to 6 (0.0%)	8 to 9 (12.5%)
CP100	1-5	1	14	7 (50%)	7 (50%)
CP100	6-10	6	14	6 (43%)	8 (57%)
CP100	Change	1 and 6	14 to 14 (0.0%)	7 to 6 (-14.3%)	7 to 8 (14.3%)
CP101	1-5	4	19	8 (42%)	11 (58%)
CP103	1-5	5	17	8 (47%)	9 (53%)
CP104	6-10	7	18	10 (56%)	8 (44%)
CP93	1-5	5	9	5 (56%)	4 (44%)
CP94	1-5	3	7	5 (71%)	2 (23%)
CP95	1-5	5	9	9 (100%)	0 (0%)
CP96	6-10	7	14	7 (50%)	7 (50%)
CP97	1-5	2	21	9 (43%)	12 (57%)
CP97	6-10	7	21	11 (52%)	10 (48%)
CP97	Change	2 and 7	21 to 21 (0.0%)	9 to 11 (22.2%)	12 to 10 (-16.7%)
CP98	1-5	5	18	9 (50%)	9 (50%)
CP99	1-5	5	18	6 (33%)	12 (67%)
CQ100	1-5	3	16	6 (38%)	10 (63%)
CQ100	6-10	8	12	6 (50%)	6 (50%)
CQ100	Change	3 and 8	16 to 12 (-25.0%)	6 to 6 (0.0%)	10 to 6 (-40.0%)
CQ101	1-5	5	19	6 (32%)	13 (68%)
CQ102	1-5	5	16	9 (56%)	7 (44%)
CQ103	1-5	4	12	8 (67%)	4 (33%)
CQ94	1-5	3	14	7 (50%)	7 (50%)
CQ94	6-10	8	18	8 (44%)	10 (56%)
CQ94	Change	3 and 8	14 to 18 (28.6%)	7 to 8 (14.3%)	7 to 10 (42.9%)
CQ95	1-5	2	19	6 (32%)	13 (68%)
CQ95	6-10	7	16	6 (38%)	10 (63%)
CQ95	Change	2 and 7	19 to 16 (-15.8%)	6 to 6 (0.0%)	13 to 10 (-23.1%)
CQ96	1-5	4	20	9 (45%)	11 (55%)
CQ97	1-5	2	13	3 (23%)	10 (77%)

Appendix Page 29 of 40

Plot ID	Cycle	Year/s	Total species	Indigenous species	Exotic species
CQ97	6-10	7	15	6 (40%)	9 (60%)
CQ97	Change	2 and 7	13 to 15 (15.4%)	3 to 6 (100.0%)	10 to 9 (-10.0%)
CQ98	1-5	4	18	3 (17%)	15 (83%)
CQ99	1-5	5	17	8 (47%)	9 (53%)
CR100	1-5	5	21	10 (48%)	11 (52%)
CR101	1-5	4	23	10 (43%)	13 (57%)
CR102	1-5	1	19	10 (53%)	9 (47%)
CR102	6-10	6	18	10 (56%)	8 (44%)
CR102	Change	1 and 6	19 to 18 (-5.3%)	10 to 10 (0.0%)	9 to 8 (-11.1%)
CR94	1-5	4	18	5 (28%)	13 (72%)
CR95	1-5	1	21	9 (43%)	12 (57%)
CR95	6-10	6	23	10 (43%)	13 (57%)
CR95	Change	1 and 6	21 to 23 (9.5%)	9 to 10 (11.1%)	12 to 13 (8.3%)
CR96	1-5	4	16	5 (31%)	11 (69%)
CR97	1-5	2	21	11 (52%)	10 (48%)
CR97	6-10	7	25	12 (48%)	13 (52%)
CR97	Change	2 and 7	21 to 25 (19.0%)	11 to 12 (9.1%)	10 to 13 (30.0%)
CR98	1-5	5	18	8 (44%)	10 (56%)
CR99	1-5	5	18	8 (44%)	10 (56%)
CS100	1-5	3	14	8 (57%)	6 (43%)
CS100	6-10	8	13	8 (62%)	5 (38%)
CS100	Change	3 and 8	14 to 13 (-7.1%)	8 to 8 (0.0%)	6 to 5 (-16.7%)
CS101	1-5	3	13	7 (54%)	6 (46%)
CS101	6-10	8	11	6 (55%)	5 (45%)
CS101	Change	3 and 8	13 to 11 (-15.4%)	7 to 6 (-14.3%)	6 to 5 (-16.7%)
CS102	1-5	1	16	11 (69%)	5 (31%)
CS102	6-10	6	18	10 (56%)	8 (44%)
CS102	Change	1 and 6	16 to 18 (12.5%)	11 to 10 (-9.1%)	5 to 8 (60.0%)
CS95	1-5	4	19	10 (53%)	9 (47%)
CS96	1-5	3	14	5 (36%)	9 (64%)
CS96	6-10	8	9	4 (44%)	5 (56%)
CS96	Change	3 and 8	14 to 9 (-35.7%)	5 to 4 (-20.0%)	9 to 5 (-44.4%)
CS97	1-5	3	18	5 (28%)	13 (72%)
CS97	6-10	8	14	7 (50%)	7 (50%)
CS97	Change	3 and 8	18 to 14 (-22.2%)	5 to 7 (40.0%)	13 to 7 (-46.2%)
CS98	1-5	1	11	3 (27%)	8 (73%)
CS98	6-10	6	12	2 (17%)	10 (83%)
CS98	Change	1 and 6	11 to 12 (9.1%)	3 to 2 (-33.3%)	8 to 10 (25.0%)
CS99	1-5	4	20	8 (40%)	12 (60%)
CT100	1-5	3	13	9 (69%)	4 (31%)
CT100	6-10	8	8	6 (75%)	2 (25%)
CT100	Change	3 and 8	13 to 8 (-38.5%)	9 to 6 (-33.3%)	4 to 2 (-50.0%)
CT100	1-5	5	20	13 (65%)	7 (35%)
CT95	1-5	3	14	5 (36%)	9 (64%)
CT95	6-10	8	10	5 (50%)	5 (50%)
CT95	Change	3 and 8	14 to 10 (-28.6%)	5 to 5 (0.0%)	9 to 5 (-44.4%)
0133	6-10	6	18	8 (44%)	10 (56%)

Appendix Page 30 of 40

Plot ID	Cycle	Year/s	Total species	Indigenous species	Exotic species
CT97	6-10	7	13	5 (38%)	8 (62%)
CT98	1-5	2	16	6 (38%)	10 (63%)
CT98	6-10	7	19	7 (37%)	12 (63%)
CT98	Change	2 and 7	16 to 19 (18.8%)	6 to 7 (16.7%)	10 to 12 (20.0%)
CT99	1-5	2	16	9 (56%)	7 (44%)
CT99	6-10	7	7	4 (57%)	3 (43%)
CT99	Change	2 and 7	16 to 7 (-56.2%)	9 to 4 (-55.6%)	7 to 3 (-57.1%)
CU100	1-5	4	25	11 (44%)	14 (56%)
CU95	1-5	5	13	6 (46%)	7 (54%)
CU96	1-5	2	14	6 (43%)	8 (57%)
CU96	6-10	7	13	5 (38%)	8 (62%)
CU96	Change	2 and 7	14 to 13 (-7.1%)	6 to 5 (-16.7%)	8 to 8 (0.0%)
CU97	1-5	3	9	5 (56%)	4 (44%)
CU97	6-10	8	10	5 (50%)	5 (50%)
CU97	Change	3 and 8	9 to 10 (11.1%)	5 to 5 (0.0%)	4 to 5 (25.0%)
CU98	1-5	3	21	12 (57%)	9 (43%)
CU98	6-10	8	9	6 (67%)	3 (33%)
CU98	Change	3 and 8	21 to 9 (-57.1%)	12 to 6 (-50.0%)	9 to 3 (-66.7%)
CU99	1-5	5	17	8 (47%)	9 (53%)
CV94	1-5	4	25	12 (48%)	13 (52%)
CV95	1-5	2	22	10 (45%)	12 (55%)
CV95	6-10	7	15	7 (47%)	8 (53%)
CV95	Change	2 and 7	22 to 15 (-31.8%)	10 to 7 (-30.0%)	12 to 8 (-33.3%)
CV96	1-5	1	12	5 (42%)	7 (58%)
CV96	6-10	6	16	6 (38%)	10 (63%)
CV96	Change	1 and 6	12 to 16 (33.3%)	5 to 6 (20.0%)	7 to 10 (42.9%)
CV97	1-5	5	15	7 (47%)	8 (53%)
CV98	1-5	4	17	6 (35%)	11 (65%)
CW94	1-5	2	17	9 (53%)	8 (47%)
CW94	6-10	7	18	8 (44%)	10 (56%)
CW94	Change	2 and 7	17 to 18 (5.9%)	9 to 8 (-11.1%)	8 to 10 (25.0%)
CW95	1-5	1	20	12 (60%)	8 (40%)
CW95	6-10	6	18	8 (44%)	10 (56%)
CW95	Change	1 and 6	20 to 18 (-10.0%)	12 to 8 (-33.3%)	8 to 10 (25.0%)
CW96	1-5	1	11	7 (64%)	4 (36%)
CW96	6-10	6	12	6 (50%)	6 (50%)
CW96	Change	1 and 6	11 to 12 (9.1%)	7 to 6 (-14.3%)	4 to 6 (50.0%)
CX93	1-5	5	17	7 (41%)	10 (59%)
CX95	1-5	1	12	6 (50%)	6 (50%)
CX95	6-10	6	16	8 (50%)	8 (50%)
CX95	Change	1 and 6	12 to 16 (33.3%)	6 to 8 (33.3%)	6 to 8 (33.3%)

Appendix Page 31 of 40

Possum monitoring

Table A4: Possum density recorded at each plot and the number of possums detected by each recording device; **LHT**: leg-hold trap catch, **WT**: wax tag records, **CC**: chew card records. Rows are shaded grey and number of devices asterisked when less than the planned number of devices were able to be sampled. Dashes ('-') indicate sites where that monitoring device was not used.

Plot	Cycle	Vear	Possum	LHT	LHT	WT	WT	WT	WT	СС	СС	СС	СС
ID	Cycle	icui	density	Possum	No. traps	Possum	Rat	Mouse	No. tags	Possum	Rat	Mouse	No. cards
CG101	1-5	4	High (≥20%)	_	_	-	_	-	-	13	2	2	40
CH100	1-5	1	Low (<10%)	1	40	-	-	-	-	-	-	-	_
CH100	6-10	6	Moderate (≥10%-20%)	-	_	_	-	_	_	5	0	0	40
CH101	1-5	5	None	-	_	-	-	-	-	0	0	0	40
CI100	1-5	3	None	_	_	_	-	-	_	0	0	0	40
CI100	6-10	8	None	_	_	_	-	-	_	0	2	0	40
CI99	1-5	1	High (≥20%)	_	_	14	0	1	40	_	-	-	_
CJ100	1-5	5	None	-	_	-	-	-	-	0	0	0	40
CJ101	1-5	5	None	_	_	-	-	-	-	0	0	3	40
CJ102	1-5	3	Moderate (≥10%-20%)	-	_	-	-	_	-	6	1	0	40
CJ95	1-5	5	None	-	_	-	-	-	-	0	0	0	40
CJ98	1-5	5	Low (<10%)	_	_	_	-	-	_	3	0	0	40
CJ99	1-5	3	None	-	-	-	-	_	-	0	0	0	40
CJ99	6-10	8	None	-	_	-	-	-	-	0	0	0	40
CK100	1-5	3	None	_	_	_	-	-	_	0	0	0	40
CK100	6-10	8	None	_	_	_	-	-	_	0	0	0	40
CK101	1-5	4	Low (<10%)	_	_	_	-	-	_	1	4	0	40
CK102	1-5	3	Moderate (≥10%-20%)	-	_	_	-	_	_	4	0	0	40
CK96	1-5	1	High (≥20%)	_	_	21	4	1	40	_	-	-	_
CK96	6-10	6	Low (<10%)	-	-	-	-	-	-	2	0	0	40
CK97	1-5	4	Low (<10%)	-	-	-	-	-	-	1	2	0	40
CK98	1-5	1	Not surveyed (X)	-	_	-	-	-	-	-	-	-	_
CK98	6-10	6	Low (<10%)	-	_	-	-	-	-	2	0	0	40
CK99	1-5	2	Moderate (≥10%-20%)	-	-	4	1	0	39*	0	0	0	40
CK99	6-10	7	None	-	_	_	-	-	_	0	0	0	40
CL100	1-5	3	None	-	-	-	-	-	-	0	0	0	40
CL101	1-5	4	Low (<10%)	-	-	-	-	-	-	1	4	0	40
CL102	1-5	2	Low (<10%)	-	-	-	-	-	-	0	0	0	35*
CL102	6-10	7	None	-	-	-	-	_	-	0	0	0	31*
CL94	1-5	3	None	_	-	-	-	_	-	0	0	0	40
CL94	6-10	8	None	-	-	-	-	-	-	0	0	0	40
CL95	1-5	4	Low (<10%)	-	-	-	-	-	-	2	4	0	40
CL96	1-5	1	High (≥20%)	11	39*	_	_	-	_	-	-	-	_

Appendix Page 32 of 40

Plot ID	Cycle	Year	Possum density	LHT Possum	LHT No. traps	WT Possum	WT Rat	WT Mouse	WT No. tags	CC Possum	CC Rat	CC Mouse	CC No. cards
CL97	1-5	5	High (≥20%)	-	_	-	-	_	_	14	0	0	40
CL99	1-5	5	None	-	_	-	-	_	_	0	0	0	40
CM101	1-5	1	Low (<10%)	_	_	1	0	0	20*	_	_	-	_
CM101	6-10	6	Low (<10%)	_	_	-	-	-	_	2	0	0	40
CM102	1-5	4	Low (<10%)	_	_	_	_	_	_	3	0	0	40
CM103	1-5	2	High (≥20%)	_	_	8	8	8	40	2	0	2	40
CM104	1-5	1	Low (<10%)	1	40	_	_	_	_	_	_	_	_
CM104	6-10	6	Low (<10%)	_	_	_	_	_	_	2	13	0	40
CM105	1-5	3	None	_	_	_	_	_	_	0	0	0	40
CM105		8	Low (<10%)	_	_	_	_	_	_	2	0	0	40
CM94	1-5	4	Low (<10%)	_	_	_	_	_	_	2	9	0	40
CM95	1-5	5	High (≥20%)	_	_	_	_	_	_	14	5	0	40
CM96	1-5	4	High (≥20%)	_	_	_	_	_	_	8	0	0	40
CM97	1-5	2	Low (<10%)	_	_	_	_	_	_	0	0	5	40
CM97	6-10	7	None	_	_	_	_	_	_	0	0	0	40
CIVIST	0 10	'	Moderate							· ·	0	0	40
CM98	1-5	2	(≥10%-20%)	-	_	4	2	1	40	1	1	2	40
CM98	6-10	7	Low (<10%)	-	-	-	-	-	_	4	0	0	40
CM99	1-5	4	None	-	-	-	-	-	-	0	0	0	40
CN100	1-5	4	Low (<10%)	-	-	-	-	-	-	1	0	0	40
CN101	1-5	5	None	-	-	-	-	-	-	0	0	0	40
CN102	1-5	4	None	-	-	-	-	-	-	0	0	0	40
CN103	1-5	3	Low (<10%)	-	-	-	-	-	-	1	5	3	39*
CN104	1-5	3	Low (<10%)	-	-	-	-	-	-	2	0	1	40
CN105	1-5	4	None	-	-	-	-	-	-	0	0	0	40
CN94	1-5	2	Low (<10%)	-	-	-	-	-	_	1	0	0	40
CN94	6-10	7	Low (<10%)	_	_	-	-	-	_	4	0	0	40
CN95	1-5	1	Low (<10%)	1	31*	-	-	-	-	-	-	-	-
CN95	6-10	6	None	-	_	-	-	-	_	0	16	0	31*
CN96	1-5	3	None	-	_	-	-	-	_	0	0	0	31*
CN97	1-5	2	Low (<10%)	-	_	-	-	-	_	1	1	3	40
CN97	6-10	7	Low (<10%)	-	_	-	-	-	_	4	0	0	40
CN98	1-5	2	Low (<10%)	-	_	-	-	-	_	3	0	0	40
CN98	6-10	6	Not surveyed (X)	-	_	-	-	-	_	_	-	-	-
CN99	1-5	5	None	-	_	_	-	-	_	0	0	0	40
CO100	1-5	3	Low (<10%)	-	-	-	-	-	_	1	0	0	40
CO100	6-10	8	High (≥20%)	-	_	-	-	-	_	9	0	0	40
CO101	1-5	1	Low (<10%)	-	-	3	0	0	20*	-	-	-	-
CO101	6-10	6	None	-	_	_	-	-	_	0	0	0	40
CO102	6-10	6	Low (<10%)	_	_	_	-	-	_	1	0	0	40
CO103	1-5	5	None	_	_	_	_	-	_	3	0	0	40
CO104		4	None	_	_	_	-	_	_	0	0	0	40
CO94	1-5	5	None	-	_	-	_	-	_	0	0	0	37*
CO95	1-5	3	Low (<10%)	_	_	_	_	_	_	1	0	0	40
CO96	1-5	5	None	_	_	_	_	_	_	0	5	0	40
CO97	1-5	4	None	_	_	_	_	_	_	0	1	0	40

Appendix Page 33 of 40

Plot ID	Cycle	Year	Possum density	LHT Possum	LHT No. traps	WT Possum	WT Rat	WT Mouse	WT No. tags	CC Possum	CC Rat	CC Mouse	CC No. cards
CO98	1-5	2	None	_	_	0	1	3	40	0	2	0	40
CO98	6-10	7	None	_	_	_	_	_	_	0	0	0	40
CO99	1-5	3	None	_	_	_	_	_	_	0	0	0	40
CO99	6-10	8	Low (<10%)	_	_	_	_	_	_	2	0	0	40
CP100	1-5	1	Not surveyed (X)	_	_	_	_	_	_	_	_	_	_
CP100		6	None	_	_	_	_	_	_	0	0	0	40
CP101	1-5	4	None	_	_	_	_	_	_	0	0	0	40
CP103	1-5	5	Low (<10%)	_	_	_	_	_	_	3	0	0	40
CP104		7	Low (<10%)	_	_	_	_	_	_	1	0	0	40
CP93	1-5	5	Low (<10%)	_	_	_	_	_	_	1	0	0	40
CP94	1-5	3	Low (<10%)	_	_	_	_	_	_	2	0	0	40
CP95	1-5	5	None	_	_	_	_	_	_	0	0	0	40
CP96	6-10	7	None	_	_	_	_	_	_	0	1	0	40
CP97	1-5	2	Low (<10%)	_	_	1	1	3	38*	0	0	0	40
CP97	6-10	7	None	_	_	_	_	_	_	0	0	0	40
CP98	1-5	5	None	_	_	_	_	_	_	0	0	0	40
CP99	1-5	5	None	_	_	_	_	_	_	0	0	0	40
CQ100		3	None	_	_	_	_	_	_	0	0	0	40
CQ100		8	Low (<10%)	_	_	_	_	_	_	2	0	0	40
CQ101		5	None	_	_	_	_	_	_	0	0	1	40
CQ101	1-5	J	Moderate		_	_		_	_	U	U	1	40
CQ102		5	(≥10%-20%)	-	_	_	-	_	-	4	0	0	40
CQ103	1-5	4	High (≥20%)	-	-	-	-	-	-	24	0	0	40
CQ94	1-5	3	None	-	-	-	-	-	-	0	0	0	40
CQ94	6-10	8	None	-	-	-	-	-	-	0	7	0	40
CQ95	1-5	2	None	-	-	0	1	3	30*	0	0	0	40
CQ95	6-10	7	None	-	-	-	-	-	-	0	0	1	40
CQ96	1-5	4	Low (<10%)	-	-	-	-	-	-	1	1	1	40
CQ97	1-5	2	Low (<10%)	-	-	0	0	2	30*	1	0	0	40
CQ97	6-10	7	None	-	-	-	-	-	-	0	0	0	40
CQ98	1-5	4	None	-	-	-	-	-	-	0	0	0	40
CQ99	1-5	5	Low (<10%)	_	_	_	-	-	_	1	0	0	40
CR100	1-5	5	Moderate (≥10%-20%)	-	_	_	_	_	_	5	0	0	40
CR101	1-5	4	Moderate (≥10%-20%)	-	_	_	-	_	_	4	1	0	40
CR102	1-5	1	Moderate (≥10%-20%)	_	_	7	0	1	40	_	-	_	-
CR102	6-10	6	Moderate (≥10%-20%)	_	_	_	_	_	_	0	0	0	40
CR94	1-5	4	Low (<10%)	_	_	_	_	_	_	0	0	0	40
CR95	1-5	1	Low (<10%)	_	_	2	1	1	40	_	_	_	-
CR95	6-10	6	None	_	_	_	_	_	4 0	0	0	0	40
CR96	1-5	4	Low (<10%)	_	_	_	_	_	_	0	0	0	40
CR96	1-5	2	Low (<10%)						30*				
				-	-	0	0	6		0	0	0	40
CR97	6-10	7	None	_	-	-	_	_	_	0	0	0	40

Appendix Page 34 of 40

Plot ID	Cycle	Year	Possum density	LHT Possum	LHT No. traps	WT Possum	WT Rat	WT Mouse	WT No. tags	CC Possum	CC Rat	CC Mouse	CC No. cards
CR99	1-5	5	Low (<10%)		•		rat -	- Mouse	No. tags	1	0	0	40
CK99	1-5	3	Low (<10%) High (≥20%)	_	_	_	_	_	_	10	0	0	40
C3100	1-3	3	Moderate		_	_		_	_	10	U	U	40
CS100	6-10	8	(≥10%-20%)	-	-	-	-	_	-	5	1	0	40
CS101	1-5	3	Low (<10%)	-	-	-	-	-	-	1	0	0	40
CS101	6-10	8	Low (<10%)	-	-	-	-	-	-	3	3	2	40
CS102	1-5	1	Moderate (≥10%-20%)	-	_	6	1	0	40	_	_	_	_
CS102	6-10	6	None	-	_	_	-	-	_	0	0	0	40
CS95	1-5	4	None	-	-	-	-	-	-	0	0	0	40
CS96	1-5	3	None	-	_	_	-	-	_	0	0	0	40
CS96	6-10	8	None	-	_	_	_	_	_	0	0	0	40
CS97	1-5	3	None	_	_	_	_	-	_	0	0	0	40
CS97	6-10	8	None	_	_	_	_	_	_	0	0	0	40
CS98	1-5	1	Not surveyed (X)	_	_	_	_	_	_	_	_	_	_
CS98	6-10	6	None	_	_	_	_	_	_	0	0	0	40
CS99	1-5	4	Low (<10%)	_	_	_	_	_	_	1	0	0	40
CT100	1-5	3	Low (<10%)	_	_	_	_	_	_	1	0	0	40
CT100		8	None	_	_	_	_	_	_	0	0	0	40
CT101	1-5	5	None	_	_	_	_	_	_	0	0	0	40
CT95	1-5	3	None	_	_	_	_	_	_	0	0	0	40
CT95	6-10	8	None	_	_	_	_	_	_	0	0	0	40
CT96	6-10	6	None	_	_	_	_	_	_	0	0	0	40
CT97	6-10	7	None	_	_	_	_	_	_	0	0	0	40
CT98	1-5	2	None	_	_	0	1	7	40	0	0	1	40
CT98	6-10	7	None	_	_	_	_	_	_	0	0	0	40
CT99	1-5	2	Low (<10%)	_	_	3	0	0	40	0	0	0	40
CT99	6-10	7	Low (<10%)	_	_	_	_	_	-	1	0	0	40
CU100		4	None	_	_	_	_	_	_	0	0	0	40
CU95	1-5	5	None			_	_	_	_	0	1	0	40
CU96	1-5	2	Low (<10%)	-	-		0	0	20*	0	0	0	40
CU96	6-10	7	None	-	_	1				0	0		40
					_	_	-	-	-			0	
CU97	1-5	3	Low (<10%)	-	_	_	-	-	_	1	0	0	40
CU97	6-10	8	Moderate (≥10%-20%)	-	_	_	-	_	_	4	0	0	40
CU98	1-5	3	Low (<10%)	-	-	_	-	-	_	1	0	1	40
CU98	6-10	8	None	-	-	-	-	-	_	0	0	0	40
CU99	1-5	5	Low (<10%)	-	-	_	-	_	_	1	0	0	40
CV94	1-5	4	Low (<10%)	-	-	_	-	_	_	1	0	2	40
CV95	1-5	2	Low (<10%)	-	-	0	4	7	30*	1	1	2	40
CV95	6-10	7	Low (<10%)	-	_	_	-	-	_	2	0	0	40
CV96	1-5	1	Low (<10%)	-	_	1	0	4	40	_	-	_	-
CV96	6-10	6	None	-	-	_	-	-	_	0	0	0	40
CV97	1-5	5	None	-	-	-	_	_	-	0	0	0	40
CV98	1-5	4	None	-	-	_	-	-	_	0	0	0	40
CW94	1-5	2	Low (<10%)	_	_	2	1	2	40	0	0	0	40

Appendix Page 35 of 40

Plot ID	Cycle	Year	Possum density	LHT Possum	LHT No. traps	WT Possum	WT Rat	WT Mouse	WT No. tags	CC Possum	CC Rat	CC Mouse	CC No. cards
CW95	6-10	6	Low (<10%)	-	-	_	-	-	_	1	0	0	40
CW96	1-5	1	High (≥20%)	-	-	11	4	2	40	_	-	-	_
CW96	6-10	6	None	-	-	_	-	-	_	0	0	0	40
CX93	1-5	5	None	-	-	_	-	-	_	0	0	0	40
CX95	1-5	1	Low (<10%)	-	-	1	0	3	40	_	_	-	_
CX95	6-10	6	None	-	-	_	-	_	_	0	0	0	40

Appendix Page 36 of 40

Ungulate & lagomorph monitoring

Table A5: Deer & goat density recorded at each plot and the number of pellets (intact or not-intact) recorded for each species, with the total number of individual intact pellets counted at each site shown in brackets where applicable. Rows are shaded grey and number of quadrats asterisked when less than the planned number of quadrats were able to be sampled.

Plot ID	Cycle	Year	Deer & goat density	Deer & goats	Rabbits	Hares	Cattle	Pigs	Sheep	Quadrats sampled
CG101	1-5	4	High (≥20%)	60 (1775)	1 (0)	1 (2)	0	17 (0)	1	120
CH100	1-5	1	None	0 (0)	26 (304)	10 (3)	0	0 (0)	106	120
CH100	6-10	6	None	0 (0)		28 (5)	29	0 (0)	97	120
CH101	1-5	5	None	0 (0)	0 (0)	0 (0)	0	0 (0)	0	120
CI100	1-5	3	None	0 (0)	3 (20)	0 (0)	0	0 (0)	0	120
CI100	6-10	8	None	0 (0)		0 (0)	0	0 (0)	0	120
CI99	1-5	1	None	0 (0)	0 (0)	0 (0)	0	0 (0)	0	120
CJ100	1-5	5	None	0 (0)	0 (0)	0 (0)	0	0 (0)	0	120
CJ101	1-5	5	Low (<10%)	4 (211)	0 (0)	0 (0)	0	0 (0)	0	120
CJ102	1-5	3	Low (<10%)	4 (101)	0 (0)	0 (0)	0	0 (0)	0	109*
CJ95	1-5	5	None	0 (0)	0 (0)	0 (0)	0	0 (0)	0	120
CJ98	1-5	5	None	0 (0)	4 (1)	1 (0)	11	0 (0)	108	120
CJ99	1-5	3	None	0 (0)	4 (5)	11 (3)	1	0 (0)	49	120
CJ99	6-10	8	None	0 (0)		8 (0)	56	0 (0)	28	120
CK100	1-5	3	Low (<10%)	4 (65)	15 (7)	4 (0)	2	0 (0)	24	120
CK100	6-10	8	Low (<10%)	8 (136)		2 (0)	4	0 (0)	26	120
CK101	1-5	4	Low (<10%)	6 (267)	0 (0)	0 (0)	0	0 (0)	0	120
CK102	1-5	3	Moderate (≥10%-20%)	17 (177)	0 (0)	0 (0)	0	4 (0)	0	120
CK96	1-5	1	None	0 (0)	0 (0)	0 (0)	6	0 (0)	1	120
CK96	6-10	6	None	0 (0)		2 (0)	24	0 (0)	0	120
CK97	1-5	4	Low (<10%)	1 (5)	0 (0)	0 (0)	0	0 (0)	0	120
CK98	1-5	1	Low (<10%)	2 (8)	2 (3)	0 (0)	0	2 (0)	0	120
CK98	6-10	6	Low (<10%)	6 (564)		0 (0)	0	7 (9)	0	120
CK99	1-5	2	None	0 (0)	0 (0)	0 (0)	0	20 (0)	0	120
CK99	6-10	7	Low (<10%)	1 (10)		0 (0)	0	0 (0)	0	120
CL100	1-5	3	Low (<10%)	10 (95)	0 (0)	0 (0)	0	0 (0)	0	120
CL101	1-5	4	Moderate (≥10%-20%)	19 (204)	0 (0)	0 (0)	0	2 (0)	0	120
CL102	1-5	2	None	0 (0)	1 (0)	1 (0)	0	0 (0)	0	115*
CL102	6-10	7	None	NA		0	NA	0	NA	104*
CL94	1-5	3	None	0 (0)	2 (0)	0 (0)	34	0 (0)	0	120
CL94	6-10	8	None	0 (0)		1 (0)	40	0 (0)	0	120
CL95	1-5	4	Moderate (≥10%-20%)	12 (109)	0 (0)	2 (12)	0	1 (0)	0	120
CL96	1-5	1	Moderate (≥10%-20%)	17 (131)	0 (0)	0 (0)	0	0 (0)	0	120
CL96	6-10	6	Low (<10%)	16 (81)		0 (0)		0		120
CL97	1-5	5	Moderate (≥10%-20%)	13 (37)	0 (0)	1 (0)	6	1 (0)	0	120
CL99	1-5	5	None	0 (0)	6 (0)	3 (0)	18	1 (0)	18	120
CM101	1-5	1	None	0 (0)	0 (0)	2 (0)	36	0 (0)	82	120
CM101	6-10	6	None	0 (0)		0 (0)	21	0 (0)	12	120

Appendix Page 37 of 40

Plot ID	Cycle	Year	Deer & goat density	Deer & goats	Rabbits	Hares	Cattle	Pigs	Sheep	Quadrats sampled
CM103	1-5	2	None	0 (0)	0 (0)	1 (0)	15	0 (0)	49	120
CM104	1-5	1	High (≥20%)	42 (597)	0 (0)	0 (0)	0	0 (0)	0	120
CM104	6-10	6	High (≥20%)	77 (2042)		0 (0)		8		120
CM105	1-5	3	None	0 (0)	8 (5)	6 (6)	2	0 (0)	105	120
CM105	6-10	8	None	0 (0)		0 (0)	57	0 (0)	68	120
CM94	1-5	4	Low (<10%)	4 (3)	0 (0)	0 (0)	0	0 (0)	0	120
CM95	1-5	5	Low (<10%)	1 (28)	0 (0)	0 (0)	0	2 (0)	0	120
CM96	1-5	4	Low (<10%)	8 (414)	0 (0)	0 (0)	0	0 (0)	0	120
CM97	1-5	2	Low (<10%)	9 (55)	0 (0)	0 (0)	0	0 (0)	0	120
CM97	6-10	7	Low (<10%)	12 (69)		0 (0)	0	2 (3)	0	120
CM98	1-5	2	Low (<10%)	1 (1)	8 (7)	0 (0)	33	3 (0)	0	120
CM98	6-10	7	Low (<10%)	1 (4)		1 (0)	41	3 (3)	0	120
CM99	1-5	4	Low (<10%)	10 (265)	0 (0)	0 (0)	0	4 (0)	0	120
CN100	1-5	4	None	0 (0)	0 (0)	0 (0)	49	0 (0)	0	120
CN101	1-5	5	None	0 (0)	0 (0)	1 (0)	42	0 (0)	16	120
CN102	1-5	4	Low (<10%)	3 (57)	0 (0)	0 (0)	0	0 (0)	0	120
CN103	1-5	3	Moderate (≥10%-20%)	15 (175)	0 (0)	0 (0)	0	11 (0)	0	120
CN104	1-5	3	Moderate (≥10%-20%)	21 (343)	0 (0)	0 (0)	0	2 (0)	0	120
CN105	1-5	4	High (≥20%)	29 (916)	0 (0)	0 (0)	0	5 (0)	0	120
CN94	1-5	2	Low (<10%)	4 (16)	0 (0)	0 (0)	0	0 (0)	0	120
CN94	6-10	7	Low (<10%)	5 (64)		0 (0)		0		120
CN95	1-5	1	Low (<10%)	6 (82)	0 (0)	0 (0)	0	0 (0)	0	120
CN95	6-10	6	Moderate (≥10%-20%)			0		0		96
CN96	1-5	3	Moderate (≥10%-20%)	12 (104)	0 (0)	0 (0)	0	0 (0)	0	120
CN97	1-5	2	Low (<10%)	6 (0)	0 (0)	0 (0)	0	0 (0)	0	117*
CN97	6-10	7	Low (<10%)	8 (61)		0 (0)	0	0 (0)	0	120
CN98	1-5	2	Low (<10%)	9 (139)	0 (0)	0 (0)	0	0 (0)	0	120
CN98	6-10	6	Not surveyed (X)							
CN99	1-5	5	None	0 (0)	2 (10)	0 (0)	9	0 (0)	0	120
CO100	1-5	3	None	0 (0)	3 (0)	1 (0)	15	0 (0)	0	120
CO100	6-10	8	None	0 (0)		0 (0)	60	0 (0)	0	120
CO101	1-5	1	None	0 (0)	3 (2)	8 (1)	70	0 (0)	103	120
CO101	6-10	6	None	0 (0)		1 (0)	69	0 (0)	17	120
CO102	6-10	6	None	0 (0)		7 (3)	8	0 (0)	1	120
CO103	1-5	5	Moderate (≥10%-20%)	23 (448)	2 (0)	3 (11)	0	3 (0)	1	120
CO104	1-5	4	Moderate (≥10%-20%)	12 (138)	0 (0)	0 (0)	6	8 (0)	2	120
CO94	1-5	5	Low (<10%)	9 (269)	0 (0)	0 (0)	0	0 (0)	0	120
CO95	1-5	3	Low (<10%)	6 (82)	0 (0)	0 (0)	0	0 (0)	0	120
CO96	1-5	5	Low (<10%)	1 (202)	0 (0)	0 (0)	0	1 (0)	0	120
CO97	1-5	4	Low (<10%)	9 (144)	0 (0)	0 (0)	0	0 (0)	0	120
CO98	1-5	2	None	0 (0)	3 (9)	0 (0)	33	0 (0)	59	120
CO98	6-10	7	None	0 (0)		0 (0)	50	0 (0)	54	120
CO99	1-5	3	None	0 (0)	0 (0)	0 (0)	69	0 (0)	0	120
CO99	6-10	8	None	0 (0)		1 (0)	72	0 (0)	0	120
CP100	1-5	1	None	0 (0)	2 (1)	7 (0)	55	0 (0)	97	120
CP100	6-10	6	None	0 (0)		1 (2)	52	0 (0)	82	120
CP101	1-5	4	None	0 (0)	0 (0)	0 (0)	22	0 (0)	105	120

Appendix Page 38 of 40

Plot ID	Cycle	Year	Deer & goat density	Deer & goats	Rabbits	Hares	Cattle	Pigs	Sheep	Quadrats sampled
CP103	1-5	5	Low (<10%)	9 (169)	1 (8)	3 (1)	0	3 (0)	39	120
CP104	6-10	7	None	0 (0)		0 (0)	0	0 (0)	5	120
CP93	1-5	5	Low (<10%)	8 (292)	0 (0)	2 (28)	0	0 (0)	0	120
CP94	1-5	3	Low (<10%)	6 (89)	0 (0)	0 (0)	0	0 (0)	0	120
CP95	1-5	5	Low (<10%)	5 (122)	0 (0)	0 (0)	0	0 (0)	0	120
CP96	6-10	7	Low (<10%)	2 (29)		2 (0)	4	2 (2)	0	120
CP97	1-5	2	None	0 (0)	2 (1)	0 (0)	32	0 (0)	0	120
CP97	6-10	7	None	0 (0)		0 (0)	49	0 (0)	0	120
CP98	1-5	5	None	0 (0)	1 (1)	0 (0)	11	0 (0)	10	120
CP99	1-5	5	None	0 (0)	0 (0)	1 (0)	8	0 (0)	25	120
CQ100	1-5	3	None	0 (0)	5 (2)	12 (17)	27	0 (0)	71	120
CQ100	6-10	8	None	0 (0)		0 (0)	20	0 (0)	38	120
CQ101	1-5	5	None	0 (0)	1 (0)	2 (1)	19	0 (0)	82	120
CQ102	1-5	5	High (≥20%)	51 (525)	1 (0)	3 (0)	0	3 (0)	0	120
CQ103	1-5	4	High (≥20%)	84 (1806)	0 (0)	0 (0)	0	9 (0)	0	120
CQ94	1-5	3	Low (<10%)	3 (5)	0 (0)	9 (5)	31	0 (0)	13	120
CQ94	6-10	8	Low (<10%)	5 (58)		0 (0)	29	1 (1)	35	120
CQ95	1-5	2	None	0 (0)	0 (0)	8 (8)	17	0 (0)	65	120
CQ95	6-10	7	None	0 (0)		0 (0)	10	0 (0)	16	120
CQ96	1-5	4	None	0 (0)	7 (0)	0 (0)	0	0 (0)	83	120
CQ97	1-5	2	None	0 (0)	5 (65)	1 (0)	4	0 (0)	86	120
CQ97	6-10	7	None	0 (0)		0 (0)	21	0 (0)	0	120
CQ98	1-5	4	None	0 (0)	0 (0)	0 (0)	26	0 (0)	32	120
CQ99	1-5	5	High (≥20%)	31 (339)	5 (0)	10 (21)	7	0 (0)	102	120
CR100	1-5	5	Low (<10%)	2 (10)	0 (0)	0 (0)	0	0 (0)	5	120
CR101	1-5	4	Low (<10%)	1 (1)	0 (0)	1 (1)	14	0 (0)	41	120
CR102	1-5	1	High (≥20%)	33 (622)	1 (2)	3 (59)	0	2 (0)	18	120
CR102	6-10	6	High (≥20%)	59 (1024)		0 (0)	0	16 (21)	0	120
CR94	1-5	4	None	0 (0)	1 (0)	2 (0)	15	0 (0)	10	120
CR95	1-5	1	None	0 (0)	2 (0)	3 (0)	85	0 (0)	0	120
CR95	6-10	6	Low (<10%)	1 (2)		2 (0)	58	0 (0)	3	120
CR96	1-5	4	None	0 (0)	0 (0)	0 (0)	0	0 (0)	0	120
CR97	1-5	2	None	0 (0)	19 (8)	17 (12)	36	0 (0)	0	120
CR97	6-10	7	None	0 (0)		0 (0)	53	0 (0)	0	120
CR98	1-5	5	None	0 (0)	0 (0)	3 (0)	14	0 (0)	96	120
CR99	1-5	5	None	0 (0)	7 (0)	0 (0)	43	0 (0)	100	120
CS100	1-5	3	Moderate (≥10%-20%)	13 (24)	11 (7)	22 (20)	22	5 (0)	51	120
CS100	6-10	8	Moderate (≥10%-20%)	18 (382)		22 (7)	18	3 (3)	0	120
CS101	1-5	3	High (≥20%)	40 (510)	1 (14)	3 (0)	4	17 (0)	0	120
CS101	6-10	8	High (≥20%)	40 (469)		0 (0)	0	2 (4)	0	120
CS102	1-5	1	High (≥20%)	36 (1059)	0 (0)	0 (0)	5	3 (0)	17	120
CS102	6-10	6	High (≥20%)	33 (1423)		0 (0)	2	3 (10)	9	120
CS95	1-5	4	None	0 (0)	10 (4)	7 (2)	21	0 (0)	102	120
CS96	1-5	3	None	0 (0)	1 (0)	2 (6)	0	0 (0)	106	120
CS96	6-10	8	None	0 (0)		0 (0)	1	0 (0)	23	120
CS97	1-5	3	None	0 (0)	0 (0)	0 (0)	1	0 (0)	83	120
CS97	6-10	8	None	0 (0)		0 (0)	12	0 (0)	31	120

Appendix Page 39 of 40

Plot ID	Cycle	Year	Deer & goat density	Deer & goats	Rabbits	Hares	Cattle	Pigs	Sheep	Quadrats sampled
CS98	1-5	1	None	0 (0)	0 (0)	0 (0)	45	0 (0)	81	120
CS98	6-10	6	None	0 (0)		10 (2)	76	0 (0)	8	120
CS99	1-5	4	None	0 (0)	0 (0)	0 (0)	31	0 (0)	6	120
CT100	1-5	3	High (≥20%)	33 (259)	0 (0)	1 (1)	0	20 (0)	0	120
CT100	6-10	8	High (≥20%)	29 (670)		0 (0)	0	7 (8)	0	120
CT101	1-5	5	None	0 (0)	13 (11)	1 (1)	33	0 (0)	22	120
CT95	1-5	3	None	0 (0)	7 (24)	28 (12)	51	0 (0)	87	120
CT95	6-10	8	None	0 (0)		0 (0)	5	0 (0)	48	120
CT96	6-10	6	Low (<10%)	2 (47)		25 (19)	18	0 (0)	89	120
CT97	6-10	7	Low (<10%)	1 (19)		0 (0)	0	0 (0)	2	120
CT98	1-5	2	Low (<10%)	4 (264)	0 (0)	4 (21)	0	0 (0)	0	120
CT98	6-10	7	Moderate (≥10%-20%)	18 (344)		0 (0)	0	0 (0)	0	120
CT99	1-5	2	Low (<10%)	6 (269)	0 (0)	3 (10)	0	1 (0)	0	120
CT99	6-10	7	Moderate (≥10%-20%)	18 (214)		1 (0)	0	2 (0)	0	120
CU100	1-5	4	None	0 (0)	0 (0)	0 (0)	0	0 (0)	36	120
CU95	1-5	5	Low (<10%)	4 (35)	0 (0)	0 (0)	0	2 (0)	3	120
CU96	1-5	2	None	0 (0)	0 (0)	2 (37)	20	0 (0)	8	120
CU96	6-10	7	None	0 (0)		0 (0)	27	0 (0)	11	120
CU97	1-5	3	Low (<10%)	9 (7)	0 (0)	25 (11)	0	6 (0)	0	120
CU97	6-10	8	None	0 (0)		0 (0)	0	0 (0)	0	120
CU98	1-5	3	Moderate (≥10%-20%)	12 (160)	0 (0)	13 (9)	0	14 (0)	0	120
CU98	6-10	8	Moderate (≥10%-20%)	21 (257)		2 (1)	0	0 (0)	0	120
CU99	1-5	5	Low (<10%)	1 (30)	3 (2)	1 (0)	12	0 (0)	37	120
CV94	1-5	4	None	0 (0)	1 (2)	0 (0)	6	0 (0)	45	120
CV95	1-5	2	None	0 (0)	0 (0)	9 (35)	47	0 (0)	92	120
CV95	6-10	7	None	0 (0)		1 (0)	31	0 (0)	99	120
CV96	1-5	1	None	0 (0)	12 (50)	16 (2)	10	1 (0)	115	120
CV96	6-10	6	None	0 (0)		0 (0)	24	0 (0)	108	120
CV97	1-5	5	None	0 (0)	2 (1)	3 (0)	25	0 (0)	93	120
CV98	1-5	4	None	0 (0)	0 (0)	5 (2)	17	0 (0)	41	120
CW94	1-5	2	None	0 (0)	7 (3)	25 (43)	19	0 (0)	103	120
CW94	6-10	7	None	0 (0)		6 (3)	8	0 (0)	89	120
CW95	1-5	1	Low (<10%)	3 (20)	0 (0)	0 (0)	2	0 (0)	9	120
CW95	6-10	6	Low (<10%)	6 (92)		0 (0)	0	1 (2)	12	120
CW96	1-5	1	Low (<10%)	10 (174)	0 (0)	0 (0)	0	0 (0)	0	120
CW96	6-10	6	Low (<10%)	10 (109)		1 (0)	0	0 (0)	0	120
CX93	1-5	5	None	0 (0)	8 (6)	0 (0)	11	0 (0)	57	120
CX95	1-5	1	High (≥20%)	45 (552)	0 (0)	1 (2)	0	7 (0)	10	120
CX95	6-10	6	High (≥20%)	60 (1331)		0 (0)	1	32 (50)	7	120

Appendix Page 40 of 40