

Hydrological model for Ruamahanga

Christian Zammit, Jing Yang

- 1. Aim of the model
- 2. Surface water model TopNet
- 3. Input data
- 4. Calibration/Validation
- 5. Regionalisation
- 6. Limitations

- 1. Aim of the model
- 2. Surface water model TopNet
- 3. Input data
- 4. Calibration/Validation
- 5. Regionalisation
- 6. Limitations

Aim of surface water model

• To provide surface water inflows to the river system discharging to the Ruamahanga groundwater zone

297 discharge entry points Daily time serie 1972-2014

Assumptions:

- Upstream catchment processes driven by surface water and snow
- Total flow little influenced by groundwater discharge

- Two steps process:
 - Calibration to existing gauging station
 - Parameter regionalisation to all catchments 4

- 1. Aim of the model
- 2. Surface water model TopNet
- 3. Input data
- 4. Calibration/Validation
- 5. Regionalisation
- 6. Limitations

TopNet: Semi-distributed Hydrological Model

1. Define stream network and subcatchments

2. Water balance is simulated within each subcatchment (including snow, evapotranspiration, surface and subsurface flows)

3. Flows from each subcatchment are routed through the river network

TopNet: Semi-distributed Hydrological Model

Data Needs

- Time series of climate data (Rainfall, temperature, climate)
- GIS data (landcover, geology, soils, topography)
- Data is available nationally, can be updated using Regional Councils datasets (eg climate) etc..

Outputs

- Integrated: Hourly river flow at every river reach
- "Catchment Production" : hourly time series of many hydrological variables (e.g. soil moisture)
- Naturalised discharge

- 1. Aim of the model
- 2. Surface water model TopNet
- 3. Input Data
- 4. Calibration/Validation
- 5. Regionalisation
- 6. Limitations

Input Data

- Spatial
 - 30 m national DEM
 - Soil related information FSL, Land use LCDB v2

Input Data

- Climate
 - VCSN (based on CLIdB) daily grid climate information : 1972-2015
 - Does not use GWRC precipitation network

- 1. Aim of the model
- 2. Surface water model TopNet
- 3. Input Data
- 4. Calibration/Validation
- 5. Regionalisation
- 6. Limitations

Calibration-Validation

- 9 locations
- Strahler 1 (catch area ~0.5 km²)
- Calibration 2001-2003
- Validation 2003-2010

Site	Tideda ID	Area (km²)
Tauherenikau	29251	114.21
Waiohine	29224	177.89
Waingawa	29246	76.50
Waipoua	29257	79.84
Ruamahanga	29254	78.70
Kopuaranga	29230	100.63
Whangaehu	29244	36.80
Taueru	29231	391.19
Huangarua	29222	139.23

- Calibration for water resource ie reproduction of low flow conditions
- Non completed analysis

Calibration-Validation

The accuracy of the calibration/validation process is estimated using the following hydrological criteria and statistics:

- NS efficiency calculated on discharge (NS- high flow) and **logarithm of the discharge** (NS Log- low flow- Jan to March).
- Total water balance of the upstream catchment
- Daily flow duration curve (FDC) (distribution of the flows) and cumulative flow (systematic bias)
- Average monthly flows (seasonality of the water balance)
- 7 days Mean Annual Low Flow (7days MALF) (low flow conditions)
- Monthly flow deciles (potential skewness towards specific flow conditions).

6e+09

4e+09

2e+09

0e+00

0

Calibration-Validation-West

Waiohine catchment

Daily Hydrograph Waiohine_2004_2014 RCHID= 9257741 Tideda id 29224 (182.658 km2)

Cum Daily Hydrograph

Daily Prob non excedance

Efficiencies

	Calibration (2001-2003)		Validation (2004-2012)	
Location	NSlog	NS	NSlog	NS
Waiohine at Gorge	0. 554	0.372	0.784	0.501

Water Balance

Annual Average Flux	TopNet (2004-2012) (mm/yr)	GWRC (2004-2012) (mm/yr)
Mean annual precipitation	4297	NA
Mean annual evaporation	249	NA
Mean annual runoff	4009	4158

Calibration-Validation-West

Waiohine catchment

Annual Average hydrological characteristics	TopNet (2004-2012) (m3/s)	GWRC (2004-2012) (m³/s)	GWRC (1954-2015) (m³/s)
Mean Annual Flow	21.592	23.439	24.510
7 days Mean Annual Low Flow	6.000	3.603	7.601

- Hydrological processes and characteristics simulated
- Lower than expected evaporation
- Low flows overpredicted- Underestimation of peaks
- Underprediction discharge during winter months

Cumu Discharge [m3/s]

Calibration-Validation-East

Whangaehu catchment

Daily Hydrograph Whangaehu_2001_2012 RCHID= 9252727 Tideda id 29244 (36.803 km2)

Efficiencies

	Calibration (2001-2003)		Validation (2004-2012)	
Location	NSlog	NS	NSlog	NS
Whageheu at Waihi	0.726	0.678	0.722	0.755

Water Balance

Annual Average Flux	TopNet (2004-2012) (mm/yr)	GWRC (2004-2012) (mm/yr)
Mean annual precipitation	1410	NA
Mean annual evaporation	734	NA
Mean annual runoff	636	509

Taihoro Nukurangi

Calibration-Validation-West

Whangaheu catchment

Monthly Average Hydrograph Whangaehu_2001_2012 RCHID= 9252727 Tideda id 29244 (36.803 km2)

Annual Average hydrological characteristics	TopNet (2004-2012) (m3/s)	GWRC (2004-2012) (m³/s)	GWRC (1954-2015) (m³/s)
Mean Annual Flow	0.571	0.617	0.526
7 days Mean Annual Low Flow	0.031	0.028	0.024

- Hydrological processes and characteristics simulated
- Low flows correctly reproduced
- Underestimation of spring flows

Calibration-Validation

Parameter Sensitivity

- Morris method- to main objective function (NSLog)
 - sensitivity across entire parameter space
 - Non linearity between parameters
- Carried out for each catchments outlet

Result

- Extreme sensitivity to precipitation correction (gucatch)
- 3 groups:
 - topmodf is the most sensitive parameter in the model (responsiveness of shallow subsurface flow)
 - swater2 (active soil depth) and dthetat (soil moisture)
 - hydraulic conductivity at saturation (hydrocon0) (surface water/groundwater interaction processes) and swater1 (plant available water).

- 1. Aim of the model
- 2. Surface water model TopNet
- 3. Input data
- 4. Calibration/Validation
- 5. Regionalisation
- 6. Limitations

Regionalisation

- Based on
 - Soil drainage similarity based on FSL
 - Soil type
 - Climate range input

- 1. Aim of the model
- 2. Surface water model TopNet
- 3. Calibration/Validation
- 4. Input data
- 5. Regionalisation
- 6. Limitations

Spatial correction of climate inputs

- Reduce station network to drive VCSN interpolation
 - Potential increase uncertainties in Precipitation and Temperature

Groundwater inflows to GW zone

• Kopuaranga

Daily Hydrograph Kopuaranga_2004_2014 RCHID= 9252319 Tideda id 29230 (100.628 km2)

Taihoro Nukurangi

Summary

- Surface water model built and calibrated
 9 upstream locations
- 2. Model provides inflows at 297 locations to GW Zone
- 3. Calibration/ Validation acceptable to good
- 4. Limitations due to climate inputs observations and potential non negligible GW inflows

Next step

- Complete analysis
- Completed uncertainty analysis
- Climate change impact on total water flows

