Valley floor streams FMU

Characterised by:

- Low summer flows and relatively limited flushing
- Surrounded by intensive land use
- Often poor quality
- High levels of abstraction relative

to rivers

Allocation limits - what to do?

Three choices for WIP:

- 1. <u>Continue</u> the current default limits (proposed in the NRP)
- As above but also include recommendations for <u>further work</u> to deliver more robust limits within set time frame
- 3. Recommend <u>new limits</u> (+ rationale).

Flow is a defining feature of streams

- Flow a "master variable" in streams.
- Influences many aspects of stream ecology, including:
 - Channel form
 - Transport of sediment, nutrients and food down a river system
 - and the distribution and behaviour of organisms.

Understanding the flow regime

- Must consider the whole flow regime
 - How much? (Magnitude)
 - How often? (Frequency)
 - How long? (Duration)
 - When? (Timing)
 - How quick? (Rate of change)
- Different aspects of the flow regime have different ecological & geomorphological functions

What happens when you reduce flows?

Reduced connectivity

Sediment deposition increased

Excessive macrophyte growth

Less habitat

Migration cues lost

Spawning habitat inaccessible

Proliferation of algae

Increased water temperatures

Lower dilution of contaminants

Reduced reaeration

Key Components of flow management (required by NPS-FM)

- <u>Minimum flow</u> is the flow at which abstraction must be restricted or cease
 - Provides refuge for instream values during periods of low flow
- <u>Allocation limit</u> is the rate (or volume) that water can be extracted
 - Protects instream values by controlling length of low flow period and maintaining some flow variability
 - Maintains reliability of supply to abstractors

Technical assessment methods

• Historical flow methods

Generalised habitat modelling

- Hydraulic habitat modelling
- Water quality modelling
- Ecohydraulics modelling

Assume status quo is best Assume linear response to flow Non-specific Easily applied Assumes habitat (or WQ) is limiting Non-linear flow response Linked with specific values Data hungry Expensive Controversial

Protection levels

- Risk management
- High value then accept minimal risk
 - minimum flow provides 90-100% habitat retention at naturalised MALF
 - allocation limit 10-20% of MALF
- Lower value then accept more risk
 - minimum flow provides 70-80% habitat retention at naturalised MALF
 - allocation limit 20-30% of MALF

Common approaches in other regions

- Historical flow methods to guide broad-scale flow management decisions
- Detailed instream habitat analysis for rivers with very high values and/or large flow alteration
- Protection levels based on risk assessment
- Allocation limits set based on security of supply

Thinking about over-allocation

- NPSFM defines over-allocation as:
 - When the water resource has been allocated beyond a limit;

а

 BUT little guidance on the spatial and temporal resolution at which limits or objectives should apply

Thinking about over-allocation

- Freshwater values vary in space & time
 - Water resource availability varies in space time
- Water resource use varies in space & time
- Need to consider how to balance spatial (temporal) variations in values, objectives implementation of limits
- Uniform rules don't result in uniform outcomes
- Same limit implemented in different ways can have different consequences

Parkvale Stream Duration of low flows

Number of days below MALF under different allocation scenarios

Parkvale Stream Duration of low flows

Number of consecutive days below MALF under different allocation scenarios

Existing practice

Daily take: Parkvale catchment water meter GWRC#292252/1

Different application of rules leads to different outcomes

	Description	Shut-off occurs when	Allocation rate at each take	Treatment of cumulative effects
Strategy 1	Each take is considered in isolation to all others and is controlled by flow at that take.	Q _{ti} < Q _{mini}	$\Delta Q_{maxi} = 0.5$ MALF _i	None for allocation rate, but catchment allocation increases and reliability reduces downstream of each new take.
Strategy 2	Minimum flows are controlled at catchment outlet. Allocation rate for each take is related to hydrology at the take.	Q _{tC} < Q _{minC}	$\Delta Q_{maxi} = 0.5$ MALF _i	None for allocation rate, but catchment allocation increases and reliability reduces downstream of each new take.
Strategy 3	Minimum flows are controlled at catchment outlet. Total catchment allocation is split equally between each take regardless of hydrology.	Qt _C < Q _{minC}	$\Delta Q_{maxi} = \Delta Q_{maxC} / n$	Total catchment allocation is limited, but allocation rate for all existing takes is altered with the addition of each new take.

Average change in flow (m3/s)

Number of over-allocated reaches