

## Overview of Urban Hydrology & Water Quality

#### Te Awarua o Porirua Whaitua Committee 16 June, 2016





Taihoro Nukurangi





## The problem(s) with imperviousness

- DIRECT: Impervious surfaces change the hydrology of urban areas and are a key source of contaminants
- CLOSELY-RELATED: Infrastructure to deal with imperviousness contributes to these effects – pipe networks speed up the delivery of stormwater to streams
- INDIRECT: Imperviousness is an indicator of urban development, which beings a whole range of other issues: loss of stream habitat, wastewater overflows... etc









#### "Not allowing fluid to pass through" Oxford English Dictionary





Low density residential 39%



High density residential 55%





#### Sub-urban commercial 76%



CBD 85%



#### Water Quantity















Source: Washington State Dept of Ecology http://www.ecy.wa.gov/washington\_waters/images/WaterCycle.jpg











С







# Flooding

Following urbanisation floods are:

- More frequent
- Larger, for a given frequency









## Erosion

More frequent flows capable of causing stream erosion

- Scour and sedimentation
- Habitat loss









#### Water Quality





#### **Stormwater Contaminants**

Although they are discharged at "points" (pipe outlets) stormwater contaminants are a DIFFUSE form of pollution, because they are washed off the land.

In contrast, POINT SOURCE pollution can be tracked to specific sources, such as the wastewater network or industrial activities.



## Sediment

Principal sources:

- Earthworks sites
- Areas of soil and vegetation
- Roads and paved areas

Principal effects:

- Build up in streams and harbours
- Increased muddiness
- Smothering of aquatic life
- Reduced water clarity





## Metals: Zn, Cu and Pb

Principal sources:

- Galvanised roofs
- Vehicle components: tyres and breakpads
- Highest yields from industrial areas, highways
- Legacy sources: e.g. lead paint in soil

Principal effects:

- Toxic to aquatic life
- 'Acute' effects during storms
- 'Chronic' effects from build up over time in sediments















#### **Other Contaminants in Stormwater**



Nutrients – Nitrogen & Phosphorus:

- Organic matter
- Fertilisers used in parks etc
- Industrial activities and spills
- Can result in eutrophication

Microbial

- Pathogens (e.g. viruses)
- Presence shown by indicator bacteria, e.g. E. coli
- Animal droppings, soil

... but where there are frequent wastewater overflows these can be the principal source of these contaminants



#### Stormwater and Wastewater

How does UNTREATED wastewater end up in stormwater and/or the environment?

- Dry weather overflows, e.g. due to pipe blockages
- Combined sewer systems in older parts of cities (not Porirua)
- Illegal / cross-connections between the s/w and w/w network
- Infiltration into (end exfiltration out of) joints and breaks in wastewater pipes Leading to wet weather overflows from the w/w network in heavy rain:
- As part of the network design, from engineered discharge points and
- When network capacity is exceeded, elsewhere...







Managing Stormwater Quantity and Quality



# 'Traditional' Approach

- Focus on drainage function
- Pipes and channel modification
- Less emphasis on stormwater treatment
- Catchpits for gross pollutant removal
- End-of-pipe ponds provide attenuation and some treatment





### Water Sensitive Design - source control



 Reduce contaminants by using low-metal yielding materials  Reduce runoff by limiting imperviousness and using permeable paving





#### Water Sensitive Design – green technologies

Use or mimic natural processes

- Bio-filtration raingardens and swales
- Wetlands more effective than ponds





## Summary

- Urban hydrology features more runoff, higher and quicker peak flows, and lower baseflows
- This results in more frequent flooding and stream erosion
- Stormwater carries sediments, metals, nutrients and microbial contaminants
- Sediment effects include poor water clarity and sediment accumulation
- Metal effects include exceedance of toxic levels in water (acute) and in sediment (chronic)
- Wastewater is also source of nutrients and microbial contaminants
- Wet weather wastewater discharges occur when stormwater gets into the wastewater system and *vice versa*
- Traditionally, stormwater management has focused on drainage
- Water Sensitive Design aims to manage runoff and contaminants at source and through using green technologies



