Urban hydrology

Brent King Senior science coordinator GWRC

Reuben Ferguson Water resources scientist Morphum Environmental

Sue Ira Director Koru Environmental

Aim of the session

 Identify the Committee's preferences for managing urban development for its impact on stream flows

Some info to help

- Why manage the effects of runoff?
- What does different infill and greenfield development practice get you?
 - How and why does hydrology differ
 - How do the effects on stream health differ
 - How and why do costs differ

Why manage the runoff effects?

- One of many factors that affect stream ecology
 - -Water quality (eg, toxicants, temperature)
 - Flow (eg, low flows, total runoff, disturbances)
 - Habitat (eg, bank stability, stream bed, shade, passage)

Why manage the runoff effects?

- People need places to live
- More hard surfaces
 - more runoff
 - faster runoff
- Cost to develop and live there
- Resilience
- Climate change
- Amenity of the built environment

Your scenarios

- Package of interventions covering many factors that affect stream health
- Today's focus is on urban runoff
- Improved
 - Slow the water down
 - Limited removal of runoff reaching the stream
- Water sensitive
 - Reduce the area of hard surfaces
 - Slow the water down
 - Store and remove runoff from reaching the stream

Case studies

- Relatively small catchments with lots of urban development in the scenarios
- Magnify the effects of urban development and changes in practice within each development type
- Results likely to be less dramatic in mixed land use catchments

Results to look for

• Annual average runoff

- changes indicate a likely shift in the stream ecology towards less diverse macroinvertebrate communities with fewer sensitive species
- Frequency of bed disturbing flows
 - too much disturbance can mean only the tolerant species (typically the small and rapidly species colonising species) survive while sensitive species are lost
- Life cycle costs per household
 - Difference in costs to install and maintain the scenario bundles of stormwater mitigation measures
 - Split of private and public borne costs

URBAN HYDROLOGY MODELLING

TE AWARUA-O-PORIRUA WHAITUA

Case study catchments

Hydrology model

- Converts rainfall into stormwater runoff
- Compare changes in runoff across development scenarios
 - Effect of landuse changes
 - Effect of stormwater management devices
 - Rainwater tanks (reuse of captured water)
 - Raingardens in streets
 - Wetlands (reuse of treated water)
 - Permeable paving
- Report results
 - Annual volume of runoff
 - Number of bed-disturbing flows per year

Model scenarios

- Existing
- BAU
 - Higher dwelling density, greater imperviousness
 - No mitigation of runoff
- Improved
 - Same density and imperviousness as BAU
 - Some mitigation of runoff using devices = stormwater **detention**
- WSUD
 - Same density but reduced imperviousness
 - Extensive use of runoff mitigation devices = stormwater **retention**

Model structure (Infill catchment)

Results – Runoff volume

% volume reduction Greenfield BAU to WSUD: 53% Improved: 10% WSUD: 43%

Infill BAU to WSUD: 42% Improved: 6% WSUD: 37%

Results – Bed disturbing flows

Key messages

- Improved scenario
 - Reduces frequency of bed-disturbing flows
 - Has small effect on total runoff volume
- WSUD scenario
 - Reduces bed-disturbing flows **and** total runoff volume
- Greatest benefit through stormwater **retention**
 - Re-use collected rainwater within houses (constant daily use)
 - Infiltration of stormwater (less viable)
- WSUD approach has wider benefits than just hydrology
 - Water quality improvement
 - Amenity enhancement
 - Reduced demand on mains water supply (rain tanks)
 - Resilience, e.g. household water supply following earthquake

Results – Cumulative frequency distribution

THE COST AGGREGATION MODEL

PORIRUA WHAITUA

Synopsis....

- What is life cycle costing and how can we use it?
- Information on the Porirua Whaitua LCC models (assumptions)
- LCC results for our two case study catchments

What is life cycle costing (LCC)?

Definition:

".....the process of assessing the cost of a product over its life cycle or a portion thereof....."

Ref: Australian/New Zealand Standard 4536:1999

Treasury New Zealand

Phases in the life cycle of a stormwater practice and potentially associated costs (Taylor, 2003)

How the stormwater LCC model works

- Builds on existing LCC Work
- Based on generating a total LCC which includes analysis of TAC and maintenance costs over a 50 year analysis period (base date of 2017)
- Relates to:
 - best practice design of the mitigations
 - impervious area treated
 - treatment performance

Understanding how to use LCCs

- Allows comparison of costs of one or more devices against another
- Balances performance (benefits) against cost
- Use ranges to express uncertainty due to data gaps or large variation in costs (focus on ranges rather than absolutes)
- Look for patterns and relative differences between scenario results
- Today's results are indicative based on the interventions and dwellings in our two case studies only.

Cost Results – urban costs

TOTAL INDICATIVE ESTIMATE LCC \$/ YEAR

IMPROVED SCENARIO

WSUD SCENARIO

Cost Results – urban costs

TOTAL INDICATIVE ESTIMATE LCC \$/YEAR/DWELLING

Cost Results – which costs to use?

TOTAL INDICATIVE ESTIMATE LCC \$/YEAR/DWELLING

Cost Results – public / private split (urban)

Cost Results – public / private split (urban)

KENEPERU INFILL CASE STUDY -IMPROVED SCENARIO Proportion of total LCC as public or private

KENEPERU INFILL CASE STUDY - WSUD SCENARIO Proportion of total LCC as public or private

Take home messages.....

- Costs are indicative estimates of LCCs relative difference between scenarios
- The difference in costs between the 'improved' and 'water sensitive' scenarios are relatively small
- Wetlands are a major driver of the large ranges in cost estimates, particularly for the 'improved scenario'

Take home messages.....

- Keneperu use high-end of cost range of estimate (infill)
- Taupo at Camborne use low-end of cost range estimate (greenfield)
- "Improved' scenario models a high share of public costs from catchment scale methods to slow water down
- "Water sensitive" scenario models higher shares of privately borne costs from the higher use of lot scale retention and in home reuse