THE COST AGGREGATION MODEL RESULTS

PORIRUA WHAITUA

Synopsis....

- What is life cycle costing and how can we use it?
- Life cycle costing results:
 - Whaitua-wide cost implications
 - Urban stormwater intervention costs
 - Wastewater costs
 - Rural costs
- Take home messages

What is life cycle costing (LCC)?

Definition:

".....the process of assessing the cost of a product over its life cycle or a portion thereof....."

Ref: Australian/New Zealand Standard 4536:1999 Treasury New Zealand

What have we produced:

Indicative cost estimates of the total amount of money required to plan and build interventions (total acquisition costs) and maintain interventions (maintenance costs) over a 50 year life cycle.

Phases in the life cycle of a stormwater practice and potentially associated costs (Taylor, 2003)

Understanding how to use LCCs

- Allows "like for like" comparison of additional costs between scenarios, over and above BAU
- Costs are assigned to particular property types depending on where they are incurred
- We use ranges to express uncertainty
 - Data gaps or large variation in costs for devices
 - Assumptions about the extent and placement of interventions into particular catchments
- Don't dwell on absolute amounts or comparisons between particular places
- Look for patterns and <u>relative differences between scenarios in each</u> <u>place/activity type</u>

How the Cost Aggregation Model works

• Builds on existing LCC Work

- Relates to costs:
 - best practice design of the mitigations
 - impervious area treated
 - desired level of treatment

Urban stormwater costs: Whaitua-wide costs

- Improved scenario: range from approximately \$6.5 \$21 million per year
- Water sensitive scenario: range from approx. \$10.5 \$28 million per year
- Wetland costs are a large driver of the wide range of costs in the improved scenario
- Costs associate with greenfield development are expected to be at the lower end of the cost range
- Costs associated with infill/ redevelopment are expected to be at the higher end of the cost range

WHAITUA-WIDE COSTS: PROPORTION OF ANNUAL LIFE CYCLE COSTS FOR THE IMPROVED AND WATER SENSITIVE SCENARIOS

URBAN STORMWATER

RURAL STORMWATER

WASTEWATER

Cost estimates per dwelling...

Where does the cost fall in the development process (value chain)?

Which scenario is more cost efficient?

Potential effect on property costs...

- Both the improved and water sensitive scenarios will lead to increased costs
- Property prices: "green" stormwater interventions may also lead to increases in property prices, particularly for properties bordering or in close proximity to larger scale interventions like wetlands.
- Highly variable but potential range of average increase is 3% and 8%.
- A lack of on-going maintenance can cause property values to decrease in the longerterm.
- Not directly comparable to LCC, but property holding costs are approximately \$22k -\$39k per year. Increased LCC per dwelling per year are around 1 – 6% of these holding costs.

Urban wastewater intervention costs

- Wastewater improvements estimated to be between \$2.1 and \$2.7 million per year, or around \$50 - \$60 per dwelling per year
- Over and above existing wastewater costs: ave \$385 per year per residential dwelling for Porirua City)
- Uncertainty as to whether these interventions get us to the level represented in the scenarios – continuing to refine these.
- Costs of improvements to wastewater network to improve leaking pipes, cross, connections – not included as these are uncertain at this time.

Rural Costs - Approach

- Accessed statistical information from Beef and Lamb NZ, Statistics NZ, GWRC, other sources
- Sourced costings from projects elsewhere, national modelling, rating database, GWRC.
- Worked with stakeholder group to refine information and identify issues.
- Defined sectors
- Developed unit costings for catchment economic modelling

Catchment rural land use

Main sectors

• Sheep and beef

- 54% of rural area
- Predominantly sheep but some mixed and one beef only
- Property size: 55ha up to ~800 ha
- Primarily rolling to steep, with limited flat land
- Limited cultivation and winter cropping.
- Most properties have off farm income
- Range of activities on small blocks, most non commercial
- Horticulture ~13 ha
- Forestry
 - 17% of rural area
 - Large land use, in significant sized blocks.

Unit Costs

Mitigation	Basis	Unit Cost	Metric
Stream fencing	Fencing one side to\$20exclude sheep and largeranimals, flat slope		\$/linear m
Planting 5m strip	Cost of planting one side of a stream	\$25	\$/linear m
Land retired with 5m buffer strip	From value of retired land	\$5.35	\$/linear m
Planting 10m buffer	Cost of planting one side of a stream	\$50	\$/linear m
Land retired with 5m buffer strip	From value of retired land	\$10.70	\$/linear m
Annual maintenance	All fenced areas	\$2.50	\$/linear m
Pole planting	Cost of planting poplars 15 stems/ha (average for all of 6e land)	\$7.50	\$/ha
Retirement (\$/ha capital costs)	20 th percentile of QV per ha values	\$10,700	\$/ha
Fencing of retired areas	Cost of excluding sheep and large animals on steep land, 50% of perimeter/ha from affected GIS polygons	\$2,100/ha for 6e, \$1400/ha for 7e, 8	\$/ha

How are the costs spread?

Catchment	Scenario	Rural LCC \$m/year	Total LCC \$m/year	Proportion of rural costs for land
All	Improved	\$0.6	\$6 - \$21	52%
	Water sensitive	\$1.2	\$11 - \$28	70%
Horokiri at PGC	Improved	\$0.16	\$0.9 - \$1.0	65%
	Water sensitive	\$0.21	\$0.01 - \$0.06	70%
Pauahatanui middle reach	Improved	\$0.1	\$0.39 - \$1.3	19%
	Water sensitive	\$0.3	\$0.4 - \$1.0	64%

Rural costs will impact significantly on some landholders

Whaitua wide - Number of rural properties with rural mitigation costs (based on a 50 year lifecycle)

Improved Water sensitive

Cost efficiency for rural mitigations - inferred

Change for contaminant removal and costs by catchment

Sediment E.coli Cost

Summary: take home messages...

Urban

- The difference in costs between the 'improved' and 'water sensitive' scenarios are relatively small and the water sensitive scenario is, in general, more cost efficient than the improved scenario.
- The interventions could increase urban property holding costs in the order of 1% 6%.
- The water sensitive scenario costs for business/ industrial properties are around double those of the improved scenario.
- There is not a great deal of difference between wastewater intervention scenario costs

Summary: take home messages...

Rural

- Rural costs are a small proportion of the total costs, but important in rural catchments and likely to be highly variable across different properties.
- There are feasibility issues with some mitigations, and the distributions of rural costs may cause hardship for some landholders. This may impact on the gains achievable.
- While the water sensitive scenarios gives greater reductions in *E. coli*, and for the Pauatahanui catchment sediment, it may not be as cost efficient as the improved scenario