

Climate and Water Resources Summary for the Wellington Region

Cold Season (May to October) 2018 Release date: 16 Nov 2018

Traffic moves along a street covered with hail in Wellington after a winter storm on 28 May 2018 brought Antarctic air into the region. The maximum daytime temperature of only 7.9°C in Kelburn, with 90km/h southerly gusts, was a sharp awakening to the cold season. It was an abrupt change from hot to cold, after we had all been spoiled with one of the hottest summers on record. Source: Peter Graczer/TVNZ.

In this report you will find:

Regional overview Global climate drivers Outlook update Whaitua summaries Summary tables and graphs

More information

For more information on monitoring sites and up-to-date data please visit <u>http://www.gw.govt.nz/environmental-science/</u>. Several climate sites are operated by NIWA and/or MetService, and GWRC is grateful for permission to present the data in this report.

Disclaimer

This report has been prepared by Environmental Science staff of Greater Wellington Regional Council (GWRC) and as such does not constitute Council policy.

In preparing this report, the authors have used the best currently available data and have exercised all reasonable skill and care in presenting and interpreting these data. Nevertheless, GWRC does not accept any liability, whether direct, indirect, or consequential, arising out of the provision of the data and associated information within this report. Furthermore, as GWRC endeavours to continuously improve data quality, amendments to data included in, or used in the preparation of, this report may occur without notice at any time. GWRC requests that if excerpts or inferences are drawn from this report for further use, due care should be taken to ensure the appropriate context is preserved and is accurately reflected and referenced in subsequent written or verbal communications.

Any use of the data and information enclosed in this report, for example, by inclusion in a subsequent report or media release, should be accompanied by an acknowledgement of the source.

Report release date: Nov 2018

90

%

250

200 175

150

130

120

110

100

90

80 70

60

45

30

15

0

The cold season from May to October 2018 saw mostly about average rainfall across the region over the entire six month period. However, a look into the rainfall patterns on a monthly basis (see next page) shows that the rainfall anomaly varied widely from month to month.

110

100

Rainfall (May to October)

The map to the right shows rainfall recorded during the entire May to October 2018 period as a percentage of the long term average.

The pattern for the six month period is that of around average rainfall across the entire region. Areas about the south coast, the Hutt catchment and northern Kapiti had totals up to 120% of normal, while parts of the Wairarapa east coast received around 80% of normal rainfall.

However, individual monthly totals show a highly varied picture (see the following page

for monthly rainfall percentage maps). The monthly

May to October 2018 total recorded rainfall as a percentage of the long-term average rainfall

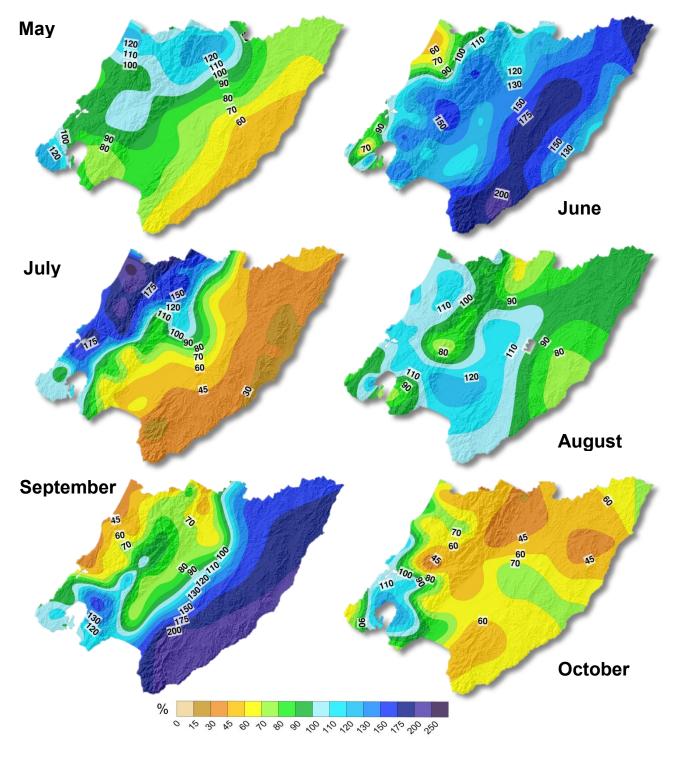
analysis highlights the variability in rainfall from month to month. The last month of the cold season, October, saw very low rainfall across most of the region. Decent rainfall totals just in the last two days of the month pulled the percentages out of what were going to be extremely low values.

Analysis of the number of days that it rained is interesting. If more than 1mm of rain is recorded in a day this is called a 'Rain Day' and if there is more than 25mm this is termed a 'Heavy Rain Day'.

The table below shows that most areas had around the average number of Rain and Heavy Rain days. The Hutt Valley and Wellington area had three more Heavy Rain Days than normal.

The Eastern Wairarapa had less overall Rain Days but an increase of two Heavy Rain Days over normal.

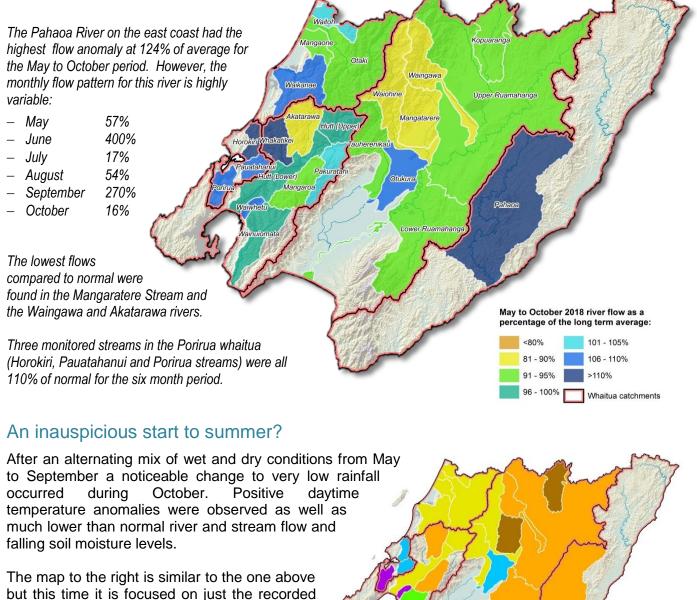
Number of Rain Days and Heavy Rain Days during May to October across the region (long-term average in brackets.)


	Kāpiti Coast		Porirua	Hutt Va Wellin	-	Ruamāhanga		Eastern Wairarapa
	Lowland	Hills	Lowland	Lowland	Hills	Lowland	Hills	
Rain Days (>1mm)	67 [70]	110 [104]	66 [66]	67 [69]	94 [96]	61 [66]	113 [115]	64 [75]
Heavy Rain Days(>25mm)	3 [3]	25 [24]	5 [5]	8 [5]	11 [13]	1 [3]	34 [34]	5 [3]

Rainfall by the month

The maps below show the percentage of average rainfall for each month of the cold season (May to October 2018). May was slightly below average to slightly above average with the exception of the east coast. June was very wet across the whole region except the Kapiti Coast. July was wet in the west and dry in the east while September was the opposite. October had very low rainfall totals leading into the warm season.

Rainfall in the eastern hills and east coast area was very up and down over the six months seeming to fluctuate from very wet conditions to very dry conditions in alternate months.


Monthly rainfall as a percentage of the long-term average

River flow

The map below shows the average river and stream flow conditions between May and October, for various monitored catchments, as a percentage of the long-term average flow over this period.

Most of the region's stream and rivers experienced near average flows during the six month period, with just a few exceptions

but this time it is focused on just the recorded river and stream flows during the month of October as compared to the long-term avarages for that month.

Only two of our monitored catchments recorded flows greater than 60% of the October average – these being the Porirua and Waiwhetu streams. The Mangatarere and

Kopuaranga stream flows were just 15% of average, while the Ruamāhanga, Pahaoa, Waingawa. Mangaroa and Akatarawa rivers were all around 25% of normal.

is a percentage of

51 - 60%

>60%

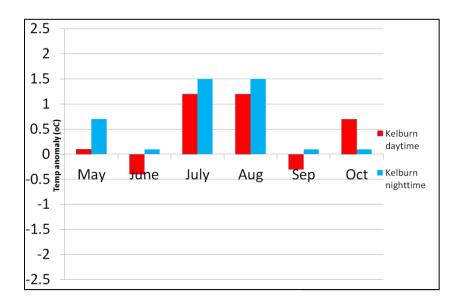
31 - 40%

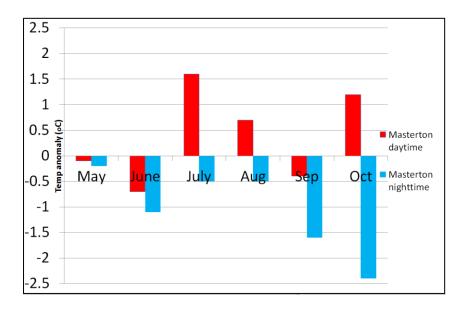
41 - 50%

October 2018 river flow

<20%

21 - 30%


long term average:



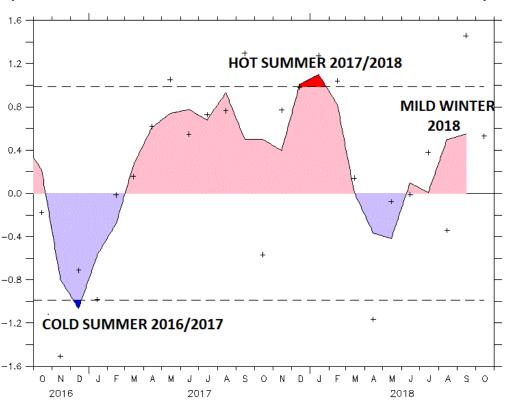
Air temperatures

Air temperature is measured at a number of meteorological monitoring sites across the region. It is useful to look at the anomalies (i.e., departures from normal) in average temperatures month by month, in order to understand the climate anomalies.

The graphs below show the monthly average daytime maximum and average nighttime minimum temperature anomalies (i.e., based on every day of the month) for Kelburn (upper panel) and Masterton (lower panel). We can see that the cold season overall was warmer than normal. For Masterton, the nighttime minimum temperatures were generally below average, possibly as a reflection of drier conditions and clear skies nights into spring, which favour heat loss into space.

Average daytime and nighttime temperature anomalies for Kelburn (top) and Masterton (bottom) for the cold season period. Most of the period has been warmer than average, except June and September. In Masterton, there has been a predominace of cold nights into spring.

SOURCE: Data from MetService meteorological stations.

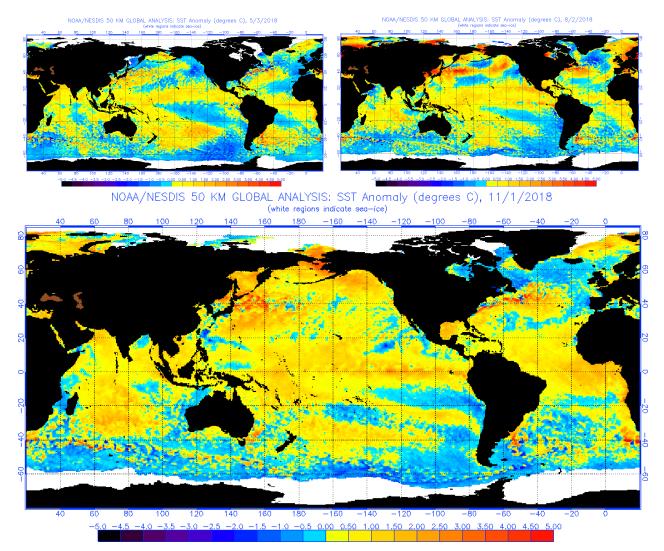

Global climate drivers

Climate variability and climate change

People often ask if the variable weather patterns in our region are a result of climate change. While natural climate variability has always been quite pronounced in our region, weather extremes are expected to get worse as a result of human-induced climate change and "global warming" caused by greenhouse gas emissions (<u>http://www.royalsociety.org.nz/expert-advice/papers/yr2016/climate-change-implications-for-new-zealand/</u>).

Some key observations about climate variability and change in our region during the period May to October 2018 are:

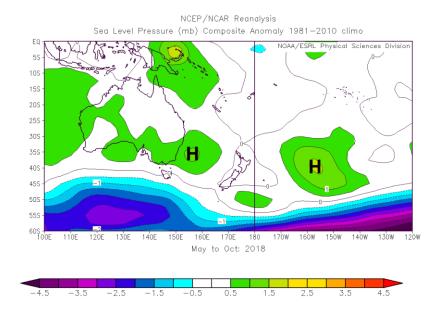
- The six-month period was warmer than normal, with abrupt, short-lived cold waves early in the season, followed by a generally mild winter;
- The sea surface temperatures (following page) have remained generally warmer than normal around New Zealand, after the demise of the exceptional marine heat wave that marked the record breaking summer of 2017-2018;
- High pressure anomalies around New Zealand, associated with the positive phase of the Southern Annular Mode (below), helped block the fronts and reduce the strength of the westerly winds. This has led to a persistence of warmer than normal temperatures around New Zealand.


SOUTHERN ANNULAR MODE INDEX (PRESSURE DIFFERENCE BETWEEN MID-LATITUDES AND ANTARCTICA)

The Southern annular mode (SAM) has been predominantly positive, helping explain the persistence of warm temperature anomalies this year around New Zealand. Source: NOAA/USA.

Global climate drivers and extreme weather events

Climate drivers are global mechanisms that can influence the weather in our region. The El Niño/Southern Oscillation¹ (ENSO) phenomenon is now starting to enter a new positive (El Niño) phase, as seen by the warm sea surface temperature anomalies at the beginning of November around the equator line (larger bottom panel below). The sea ice extent (in white) has been below average, with a partial recovery after the winter season (seen in white, bottom panel).



Sea surface temperature anomalies on 3rd May 2018 (left), 2nd Aug 2018 (right) and 1st Nov 2018 (bottom). We can see the equatorial Pacific getting progressively warmer towards reaching El Niño state, after the demise of the weak La Niña that was still seen in May (upper left). The waters remain warmer than normal around and east of New Zealand, which helps explain the persistence of warmer than average air temperatures for most of the country. Source: NOAA/USA.

The pressure anomalies over the six month period show two weak anticyclones (marked as H) dominating the latitudes of New Zealand (see figure on the next page). This pair is related to the positive phase of the Southern Annular Mode (SAM) discussed earlier, helping explain the mild cold season in 2018 and a predominance of warmer than average temperatures since early 2017.

¹ <u>https://www.niwa.co.nz/education-+-and-training/schools/students/enIn</u>

Mean sea level pressure anomaly for May to Oct 2018.

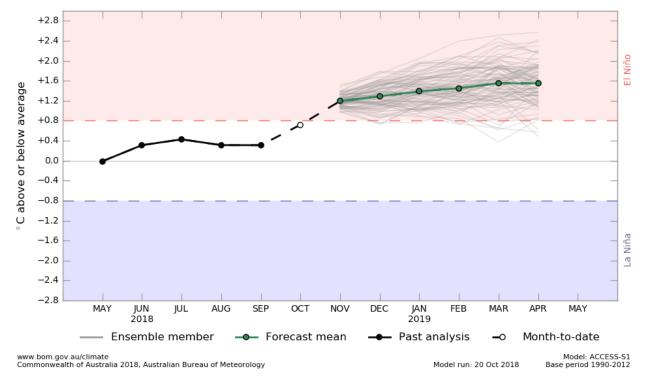
Weak high pressure anomalies dominated the oceanic areas east and west of New Zealand. This pattern helped to divert the approaching fronts south of New Zealand, resulting in weaker winds and higher than average temperatures.

Source: NOAA (USA).

Thanks to the positive SAM, the Wellington Region was spared from very extreme weather events in the cold season, with a few exceptions during the beginning and end of the season when the SAM briefly shifted to the negative phase. The high pressure influence also contributed to unusual dryness, with the relative humidity in Wellington dipping to 28% at Greta Point in late October. The rainfall pattern, as discussed earlier, was extremely variable on a month-to-month basis, reflecting the intra-seasonal variation in the high pressure patterns.

Seasonal climate outlook update

The variable rainfall pattern over the last six months has resulted in a total accumulation of just about average for most of the region. Thanks to the prevailing high pressures, the soil moisture is leaning to the dry side. Overall conditions for farming in the Wairarapa have been good, as indicated by increased pasture growth reported by some farmers.

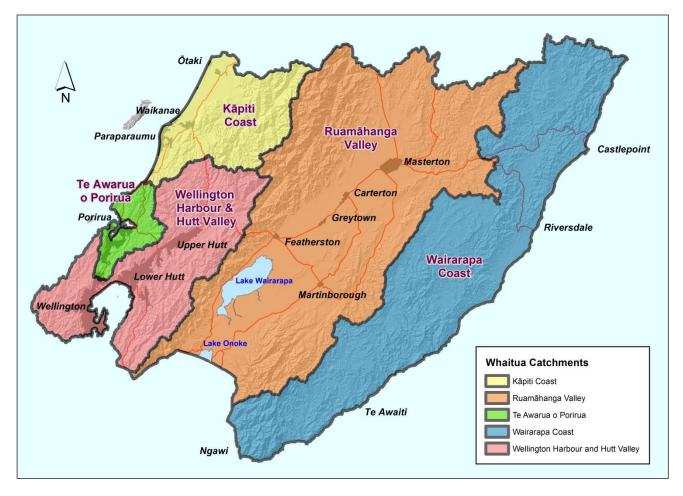

The ENSO phenomenon is expected to enter a new El Niño phase during the warm season. At this stage, the projection is for a weak event. The sea surface temperature anomalies around New Zealand remain warmer than average for the most part, although not as strong as they were previously. The emerging El Niño is expected to possibly be of the "Modoki" type, which is a specialist term for El Niños that don't show the traditional water warming signal around South America. If this is confirmed, the impacts on New Zealand will likely be weaker (and less predictable) than those of a regular El Niño. The current warm water pattern around and east of New Zealand is also not normally observed in El Niño years, and could contribute to oppose some of the drying effects from ENSO.

In summary, this is shaping up as a difficult season to predict, with no reliable climate analogues in the recent past to draw a comparison of expected anomalies. The following points summarise the expected pattern over the next three months:

- About **70% probability of El Niño** developing by the end of the year (high confidence);
- "Weird event": not too strong, mixed signals, mixed effects. Climate unlikely to behave like normal El Niños (high confidence);
- Predominant **westerly regime**, but easterly rainfall events still possible (moderate confidence);
- Warm Sea Surface Temperature around and east of New Zealand adds to variable pattern, reduces severe drought chance for the time being;
- **Drier than average**: dry pattern possible, but unlikely to be severe (low confidence for rainfall totals);
- Warmer than average: good chance of heat waves, but more unsettled and not nearly as hot as the record summer of 2017-2018 (high confidence)

The full climate outlook for summer will be released with our regular seasonal briefing by mid-December.

Monthly sea surface temperature anomalies for NINO3.4 region


ENSO predictions as of 20 Oct 2018, showing that an El Niño (positive phase) is expected to develop over the summer season. Source: BOM (Australia)

What happened in each whaitua catchment?

Climate and water resource summaries are provided in the following sections for each of the five Wellington region whaitua catchment areas (as shown below). The whaitua catchments provide an important sub-regional basis for environmental management in the Wellington region², and roughly coincide with the different climate and water resource zones.

Click the following links for November 2017 to April 2018 summaries for:

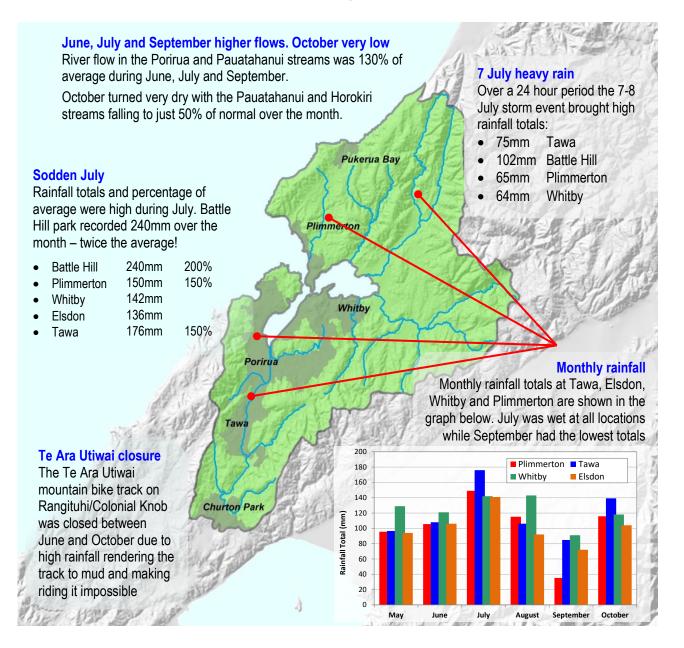
- Wellington Harbour and Hutt Valley
- <u>Te Awarua-o-Porirua</u>
- Kāpiti Coast
- Ruamāhanga Valley
- Wairarapa Coast

Map of the five whaitua catchment areas in the Wellington region. Each whaitua roughly coincides with a climatic zone, expressing the marked east-to-west contrast that we experience in our region.

² <u>http://www.gw.govt.nz/whaitua-committees/</u>

Wellington Harbour and Hutt Valley climate summary

- Total rainfall was around average but varied quite markedly from month to month.
- High monthly mean temperatures particularly in July and whole winter period
- Very dry October, especially in water supply catchment area of the Hutt River


Hutt River headwaters dry in October October rainfall totals in the headwaters of the Hutt River catchment were well below normal: • Kaitoke 54% of average (114mm). The 8th lowest October total since 1951 and LOWEST since 1978. • Bull Mound 53% of average (246mm). The 2nd lowest since 1976 and the LOWEST since 1985. Tararua Ranges Wind and rain 7-8 July Stormy weather caused flooding, slips and power cuts. A number of roads were closed. 24 hour rainfall totals were high: 90mm • Upper Hutt **River flows** 73mm Lower Hutt River flows over Wainuiomata 60mm the six month Upper Hutt Wellington 56mm period were close to normal. 162mm was recorded at the top of the However there were large Lower Hutt Akatarawa Hill Rd. monthly variations. June and July had well above average flows while August flows were low. Wellington But October was very dry with river flows falling to around 30-40% of those normally expected. **Record mean temperatures:** • Kelburn 3rd highest since 1927 **Cook Strait ferries cancelled** July: • Watn Airport 3rd highest since 1962 There were several instances during the cold season of cancelled ferry services due to adverse conditions. Kelburn 3rd highest since 1927 Winter Forecast severe winds on 3-4 September and 12 • Wgtn Airport 4th highest since 1962 (JJA): October caused precautionary cancellations.

Want to look at the summary tables and graphs?

- Rainfall
- <u>River flows</u>

Te Awarua-o-Porirua climate summary

- Total six month rainfall close to average
- Very wet June and july
- September rainfall as low as 40% of average at Plimmerton and Battle Hill

Want to look at the summary tables and graphs?

- Rainfall
- River flows

Kāpiti Coast climate summary

- Six month rainfall was slightly above average to the north and in the Tararua Range, average in Waikanae and Paraparaumu, and slightly below average to the south at Paekakariki
- July was vey wet particularly in Otaki which had the highest July rainfall total since recording began in 1893
- River flows tended low at end of season and heading into the warmer months

July soaking - rainfall up to 240% of average:

- Otaki 230mm (wettest July since 1893)
- Waikanae 230mm (4th wettest since 1969)
- Paraparaumu 174mm
- Paekakariki 120mm
- Tararua Range 706mm (2nd wettest since 1992)

Paekakarik

Wet winter Otaki and Taraua Range

June, July and August (winter) rainfall was well above average in the north of the Kapiti Coast.

Total rainfall recorded at Otaki was 410mm. This is 150% of the average winter total and it the 5th highest total since records started in 1893.

High in the Tararua Range a total of 1800mm rain fell during winter – the 2nd wettest total since records began in 1992. River flow variable – but ending the season low Recorded river and stream flows across the Kapiti Coast showed marked variation over the six month period. The last two months of the cold season (September and

Taraua Ranges

October) brought much lower than average flows.

- July river flows were 180-250% of average
- September river flows were 60-75% of average
- October river flows were 34% of average

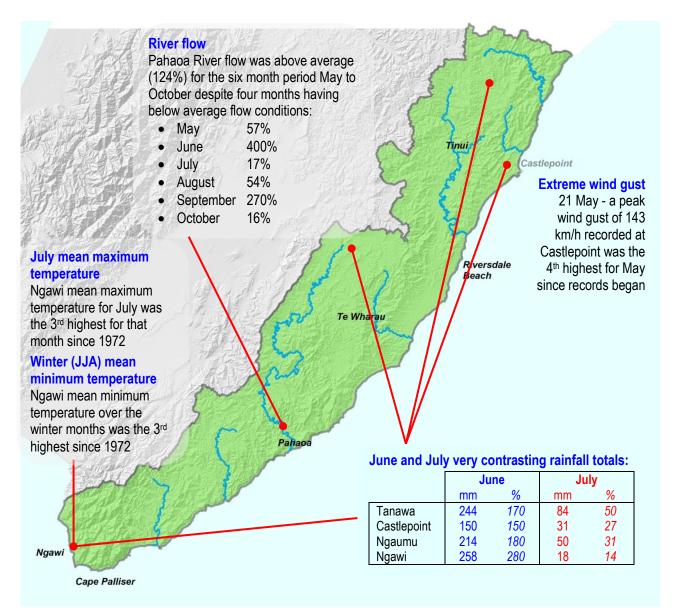
Want to look at the summary tables and graphs?

Waikanae

- <u>Rainfall</u>
- River flows

Ruamāhanga Valley climate summary

- Six month rainfall slightly below average in main Ruamahanga valley, slightly above average to the east and around average in the Tararua Range.
- Monthly rainfall totals highly variable. October was very dry (50-60% of normal rainfall)
- Winter months warmer than normal


Toxic algae Tararua rivers low heading into Waipoua River Talana Anna warmer months A toxic algae August, September and October bloom was saw rivers draining from the Tararua detected in the Range fall to below average flows. Waipoua River at The Waingawa, Waiohine and the Colombo Rd Tauherenikau rivers all had about bridge (Masterton) 70-80% of normal flow over August in early October and September but fell even lower Masterton to around 30% of average during October. Carterton **Dry October** Greytown October brought well below Featherston average rainfall to the area. Water restrictions Masterton and Featherston had in October! totals that were just 50% and On 24 October, Lake Wairarapa Martinborough water restrictions 60% of the October average were put into place respectively in Masterton due to Rainfall in the Tararua Ranges low spring rainfall. was also just 50% of normal. Residents were not Lake Onoke allowed to use Lake Ferry **High temperatures:** hand held hoses The mean maximum temperature recorded during because the water July at Masterton and Martinborough was the 3rdsupply from the highest recorded since data collection began at Waingawa River both locations in 1906 and 1986 respectively. was running low. The mean winter (JJA) temperature at Martinbough was the 4th highest on record (since 1986).

Want to look at the summary tables and graphs?

- Rainfall
- River flows

Wairarapa Coast climate summary

- Very low river flows in July and October
- Warm July
- Very wet June

Want to look at the summary tables and graphs?

- Rainfall
- Soil moisture

Rainfall statistics

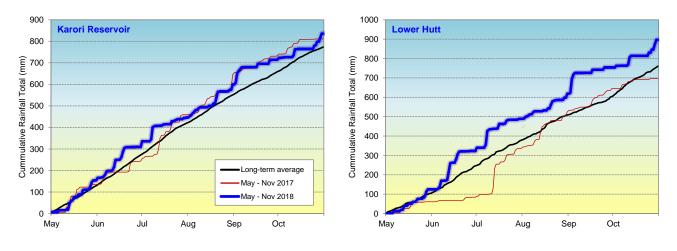
Rainfall was variable over individual six months in the May to October period, but ended up largely around average.

Ruamāhanga and Wairarapa Coast whaitua had really variable conditions with some months such as June and September being very wet, and July and October being very dry.

Whaitua	Location	Мау	Jun	Jul	Aug	Sep	Sep Oct		May-Oct		
	Location	%	%	%	%	%	%		(mm)	%	
Wellington Harbour & Hutt Valley <u>Click to see</u>	Kaitoke	104	156	124	88	99	54		1382	104	
	Lower Hutt	116	154	127	98	141	99		897	122	
	Wainuiomata	66	131	67	93	148	117		1188	101	
cumulative rainfall plots	Karori	126	120	98	124	115	114		836	116	
<u>proto</u>	Wellington	108	118	104	121	140	113		666	117	
Te Awarua-o- Porirua	Battle Hill	88	125	196	111	44	94		841	108	
Click to see cumulative rainfall plots	Whenua Tapu	97	100	150	120	38	110		616	102	
	Tawa	86	92	153	98	105	114		711	104	
Kāpiti Coast Click to see cumulative rainfall plots	Otaki	159	64	237	134	52	60		657	121	
	Waikanae	102	67	189	102	55	70		686	98	
	Paekakariki	82	93	83	93	40	111		607	83	
	Tararua (Otaki headwaters)	109	147	149	98	89	69		3115	109	
Ruamāhanga	Masterton	84	133	61	104	72	48		437	82	
Click to see	Featherston	80	87	68	98	72	61		475	79	
<u>cumulative rainfall</u> plots	Longbush	74	205	56	103	193	71		645	115	
	Tararua (Waiohine headwaters)	114	116	151	90	74	51		2658	98	
Wairarapa Coast Click to see cumulative rainfall plots	Tanawa Hut	91	172	49	94	171	65		826	105	
	Ngaumu	63	188	31	70	109	43		516	83	

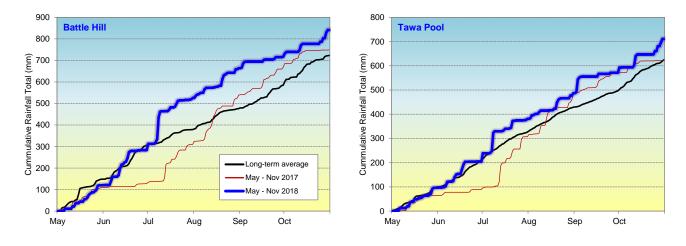
- Wellington Harbour & Hutt Valley
- <u>Te Awarua-o-Porirua</u>
- Kāpiti Coast
- Ruamāhanga
- Wairarapa Coast

Cumulative rainfall plots


Cumulative rainfall totals for the May to October 2018 period are detailed for various rain gauges sites across the regional whaitua areas, as denoted by the blue trace on the following plots. The May to October 2017 period is denoted by the red trace and the black trace represents the long-term average rainfall accumulation.

Wellington and Hutt Valley

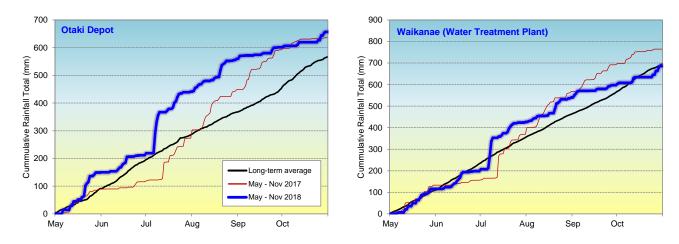
The plots highlight that the rainfall accumulation during the May to October period was around average in Wellington and slightly above average in the Hutt Valley.


Periods of high rainfall accumulation are evident during June, July and September.

The total rainfall at Karori was similar to the previous year while Lower Hutt saw around 200mm more rainfall.

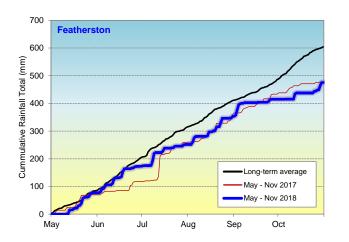
Porirua Harbour

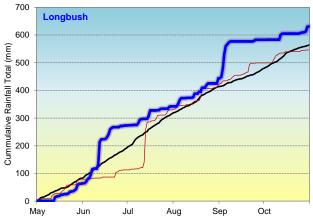
The plots show that the rainfall accumulation evolution over the May to October period at the two sites within the Te Awaruao-Porirua whaitua area were quite similar, with around average rainfall untilJuly before higher than normal totals brought the entire period above average.

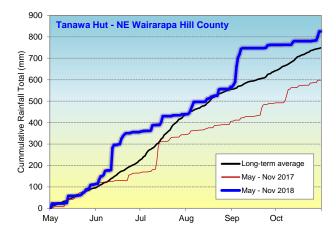


Rainfall for the period was around 15% greater than average.

Summary tables and graphs


Kāpiti Coast


Rainfall recorded at Otaki was 100mm higher than average for the May to October period, and around the same as the previous year. July was exceptionally wet with the monthly total (230mm) being 240% of what is normally expected for the month.


Ruamāhanga

Rainfall at Featherston ended up 130mm below average for the May to October period – very similar to 2017. In contrast, Longbush received a slightly above average total with two very wet periods in June and September evident.

Wairarapa Coast

The Tanawa Hut rain gauge in the Wairarapa Coast area showed a similar rainfall accumulation trend to the Longbush gauge (above) with the May to October total being around 10% higher than aevrage.

The total rainfall of 825mm is 230mm (or almost 40%) higher than that received for the same period in 2017.

River flows - averages

The average river flows over the entire May to October period were very close to normal. But as can be seen each individual month was quite variable with June and July having very high flows in most areas. August flows were below average but October flows were exceptionally low with some streams in the Ruamāhanga whaitua dipping down lower than 20% of normal.

		Flow as a percentage of average						
Whaitua	River	Мау	Jun	Jul	Aug	Sep	Oct	May-Oct
	Hutt River - Kaitoke	91	158	127	70	107	40	99
	Hutt River - Taita Gorge	79	178	141	69	105	34	100
Wellington	Akatarawa River	71	125	156	65	71	28	84
Harbour & Hutt Valley	Mangaroa River	70	225	89	55	117	28	92
	Waiwhetu Stream	82	156	105	94	150	77	110
	Wainuiomata River	61	169	83	80	179	43	100
	Porirua	81	129	127	83	134	83	107
Te Awarua-o- Porirua	Pauatahanui	73	133	142	104	133	57	110
	Horokiri	75	190	205	80	81	52	115
Kāpiti Coast	Waitohu	104	91	254	109	54	33	101
	Otaki	105	107	181	81	75	37	94
	Mangaone	117	78	205	95	60	36	94
	Waikanae	77	104	258	98	77	35	108
Ruamāhanga	Kopuaranga	142	142	84	57	135	15	92
	Waingawa	113	121	126	80	70	26	88
	Waiohine	101	134	127	78	79	32	90
	Mangatarere	88	142	90	81	88	14	82
	Tauherenikau	91	158	102	78	99	35	94
	Otukura	108	158	85	100	159	58	108
	Ruamāhanga	100	160	97	74	113	25	94
Wairarapa Coast	Pahaoa	57	400	17	54	270	16	124

- Wellington Harbour & Hutt Valley
- <u>Te Awarua-o-Porirua</u>
- Kāpiti Coast
- Ruamāhanga
- Wairarapa Coast

River flows – lowest

Minimum river and stream flows recorded during the May to October 2018 period. A number of flows recorded during October were record lows for that month.

Whaitua	River	Minimum Flow					
Whattua	NIVE!	Flow (m ³ /s)	Date	Comment			
Wellington Harbour & Hutt Valley	Hutt (Kaitoke)	1.653	22 October	Lowest Oct flow on record (1967)			
	Hutt (Taita Gorge)	6.313	22 October	Lowest Oct flow since 2001			
	Akatarawa	1.278	22 October	Lowest Oct flow since 1989			
	Mangaroa	0.716	22 October	Lowest Oct flow since 2001			
	Wainuiomata	0.122	9 May				
	Porirua	0.278	8 May				
Te Awarua-o- Porirua	Pauatahanui	0.358	7 October				
	Horokiri	0.209	7 May				
	Waitohu	0.227	8 May				
Kaniti Cooot	Otaki	0.292	8 May				
Kāpiti Coast	Mangaone	5.24	22 October				
	Waikanae	0.141	8 October				
	Kopuaranga	1.623	22 October				
	Waingawa	0.441	22 October	Lowest Oct flow since 2001			
	Waiohine	1.337	22 October	Lowest Oct flow on record (1976)			
Duomāhanga	Mangatarere	3.965	22 October	Lowest Oct flow on record (1979)			
Ruamāhanga	Tauherenikau	0.18	22 October	Lowest Oct flow on record (1999)			
	Otukura	1.74	22 October	Lowest Oct flow since 1985			
	Ruamāhanga (Upper)	0.284	9 May				
	Ruamāhanga (Lower)	3.013	22 October	Lowest Oct flow on record (1977)			
Wairarapa Coast	Pahaoa	13.415	22 October	Lowest Oct flow on record (1976)			

* Analyses have been completed on provisional data which may be subject to change once it is processed and archived.

- Wellington Harbour & Hutt Valley
- <u>Te Awarua-o-Porirua</u>
- <u>Kāpiti Coast</u>
- <u>Ruamāhanga</u>
- Wairarapa Coast

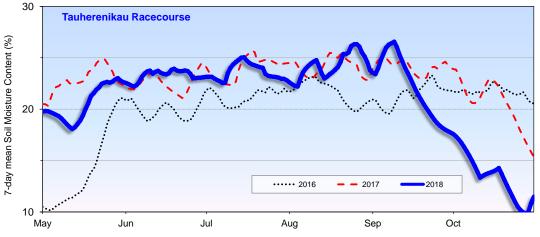
River flows – highest

Maximum river and stream flows recorded during the May to October 2018 period. The estimated return period is given for each event.

		Maximum Flow					
Whaitua	River	Flow (m ³ /s)	Date	Return Period (years)			
Wellington Harbour	Hutt (Kaitoke)	237	12 June	1			
	Hutt(Taita Gorge)	715	12 June	1			
	Akatarawa	167	8 July	1			
& Hutt Valley	Mangaroa	144	12 June	3			
	Waiwhetu	10	8 July	1			
	Wainuiomata	25	12 June	1			
	Porirua	40	8 July	3			
Te Awarua-o- Porirua	Pauatahanui	26	8 July	1			
	Horokiri	27	8 July	2			
	Otaki	31	8 July	1			
Kāpiti Coast	Mangaone	613	7 July	1			
	Waikanae	10	7 July	1			
	Kopuaranga	184	8 July	3			
	Waingawa	33	5 September	1			
	Waiohine	153	12 June	1			
Duomāhanga	Mangatarere	517	12 June	1			
Ruamāhanga	Tauherenikau	33	12 June	1			
	Otukura	295	12 June	2			
	Ruamāhanga (Upper)	6	4 September	1			
	Ruamāhanga (Lower)	355	12 June	1			
Wairarapa Coast	Pahaoa	1012	13 June	1			

* Analyses have been completed on provisional data which may be subject to change once it is processed and archived.


- Wellington Harbour & Hutt Valley
- <u>Te Awarua-o-Porirua</u>
- <u>Kāpiti Coast</u>
- <u>Ruamāhanga</u>
- Wairarapa Coast


Soil moisture content

Wairarapa Coast

May to October 2018 soil moisture content at monitoring sites at Tanawa Hut in north-east Wairarapa (Wairarapa Coast whaitua) and Tauherenikau racecourse (Ruamāhanga whaitua) are plotted below.

Soil moisture at Tanawa Hutt started the period slightly higher than average and continued to show average characteristics until October when low rainfall and and warmer conditions contributed to it dropping to relatively low levels for that time of the year.

Drought monitoring

GWRC maintains a drought check webpage with regional anomaly maps and links to live data across the region:

http://www.gwrc.govt.nz/drought-check/

Climate Briefings

Additionally to the extended water resources reports, the Environmental Science department, GWRC, also produces seasonal updates specifically targeting the farming community. Those can be accessed from the main Climate and Water Resource webpage:

http://www.gw.govt.nz/seasonal-climate-and-water-resource-summaries-2/

Environmental data

GWRC maintains a comprehensive online environmental data server feeding real time, live data across the region for several climatic and hydrological variables

http://graphs.gw.govt.nz

Interactive Climate Change Mapping

The Environmental Science department at GWRC has produced one of the first comprehensive climate change mapping tools publicly available in New Zealand. The online mapping tool is fully interactive and easy to understand, allowing users to plot over twenty different variables, projected over every available IPCC scenario for both mid and late century

https://mapping1.gw.govt.nz/gw/ClimateChange/

The Greater Wellington Regional Council's purpose is to enrich life in the Wellington Region by building resilient, connected and prosperous communities, protecting and enhancing our natural assets, and inspiring pride in what makes us unique

For more information contact the Greater Wellington Regional Council:

Wellington office PO Box 11646 Manners Street Wellington 6142 Upper Hutt office PO Box 40847 Upper Hutt 5018

04 526 4133

Masterton office PO Box 41 Masterton 5840

06 378 2484

Follow the Wellington Regional Council

info@gw.govt.nz www.gw.govt.nz

04 384 5708