

Climate and Water Resources Summary for the Wellington Region

Warm Season (November to April) 2017/2018 Release date: 25 May 2018

Contents

Damage to SH1 seawall north of Pukerua Bay Photo: NZTA

Logs, rocks and debris washed into Makara Beach community

Photo: Makara Beach Cafe

Ex-tropical cyclone Gita crossed the region on 20 February. While we were spared the extreme rainfall and severe flooding/slips that affected other parts of the country, the severe weather certainly made its presence felt.

State Highway 1 was damaged and closed for a time after waves destroyed part of the seawall and crashed across the road dumping debris.

Storm surge also caused damage to the Kāpiti coastline, contributing to flooding in Paraparaumu Beach and Raumati South.

Further south, boat sheds at Titahi Bay and a number of houses and properties at Makara Beach were damaged by the destructive storm surge.

Winds of 140kmh were recorded on the Rimutaka Range and in areas of the Wairarapa. At Kelburn winds peaked around 120kmh.

Titahi Bay boatsheds damaged by waves Photo: Porirua City Council

In this report you will find:

Regional overview Global climate drivers Outlook update Whaitua summaries Summary tables and graphs

More information

For more information on monitoring sites and up-to-date data please visit <u>http://www.gw.govt.nz/environmental-science/</u>. Several climate sites are operated by NIWA and/or MetService, and GWRC is grateful for permission to present the data in this report.

Disclaimer

This report has been prepared by Environmental Science staff of Greater Wellington Regional Council (GWRC) and as such does not constitute Council policy.

In preparing this report, the authors have used the best currently available data and have exercised all reasonable skill and care in presenting and interpreting these data. Nevertheless, GWRC does not accept any liability, whether direct, indirect, or consequential, arising out of the provision of the data and associated information within this report. Furthermore, as GWRC endeavours to continuously improve data quality, amendments to data included in, or used in the preparation of, this report may occur without notice at any time. GWRC requests that if excerpts or inferences are drawn from this report for further use, due care should be taken to ensure the appropriate context is preserved and is accurately reflected and referenced in subsequent written or verbal communications.

Any use of the data and information enclosed in this report, for example, by inclusion in a subsequent report or media release, should be accompanied by an acknowledgement of the source.

Report release date: May 2018

Regional overview

250

200

175

150

130

120 110

100

90

80

70

60 45

30

15 0

The warm season from November 2017 to April 2018 saw mostly about average rainfall across the region with greatest departures from the average occurring around the mid to upper part of the Ruamāhanga valley.

Rainfall (November to April)

The map to the right shows rainfall recorded during the entire November to April period as a percentage of the long term average.

While the pattern of the six month period is that of around average to slightly above average rainfall over much of the region, the individual monthly totals show a highly varied picture (see the following page for monthly rainfall percentage maps).

The areas that received the highest rainfall percentages (120-130%) for the six month period were the northern Ruamāhanga valley between the Whangaehu River and Carterton, the southern part of Wellington city, and extending up to Paekakariki and Paraparaumu. November 2017 to April 2018 total recorded rainfall as a percentage of the long-term average rainfall

The recorded rainfall shows there was a relatively even spread of average (to slightly above average) rainfall when compared to normal. (The dots on the map indicate rainfall recording sites)

Separate rainfall maps for each month, shown on the following page, highlight the variability in rainfall during each month. Two extremes occurred with record breaking low rainfall and dry conditions in November and then the record breaking wet during February.

Another way to consider the weather is to look at the number of days that it rained. If more than 1mm of rain is recorded in a day this is called a 'Rain Day' and if there is more than 25mm this is termed a 'Heavy Rain Day'.

The table below shows that all areas had more Rain and Heavy Rain days than normal. Most areas had around twice the average number of Heavy Rain days.

Number of Rain Days and Heavy Rain Days during May to October across the region (long-term average in brackets.)

	Kāpiti Coast		Porirua	Hutt Valley & Wellington		Ruamāhanga		Eastern Wairarapa
	Lowland	Hills	Lowland	Lowland	Hills	Lowland	Hills	
Rain Days (>1mm)	72 [53]	104 [78]	60 [45]	59 [47]	86 [68]	60 [44]	99 [84]	51 [50]
Heavy Rain Days(>25mm)	8 [3]	37 [21]	10 [4]	9 [4]	20 [10]	6 [3]	39 [25]	5 [3]

Rainfall by the month

The maps below show the percentage of average rainfall for each month of the warm season (November 2017 to April 2018). November and December had below average rainfall. November was very exceptionally dry everywhere with figures below 10% in the east. A localised thunderstorm created the high anomaly near Carterton.

The dry pattern changed during January and into February which became a very wet month with above 200% of the normal rainfall in Wellington, Kāpiti Coast and mid Ruamāhanga valley.

River flow

The map below shows the average river and stream flow conditions between November and April, for various monitored catchments, as a percentage of the long-term average flow over this period.

The entire region experienced largely below average flows during November to April with only one monitored river site, in the Pahaoa catchment, registering 100% of normal.

A cracking start to summer

After a pretty wet three months from July to September 2017 the tap just appeared to turn off on the rainfall and October, November and December turned into very dry and warmer than average months.

Rainfall records tumbled in November and December.

November:

- Karori 2nd lowest since 1879
- Wainuiomata LOWEST since 1890
- Tauherenikau LOWEST since 1963
- Longbush LOWEST since 1947
- Otaki 3rd lowest since 1893

December:

- Paraparaumu LOWEST since 1945
- Waikanae 2nd lowest since 1969
- Tararua Range LOWEST since 1974

And hot! - the number of days with temperature over 25°C (Nov-Apr); Kelburn - 18, Wgtn Airport - 28, Upper Hutt - 30, Porirua - 21, Paraparaumu - 27, Martinborough - 59, Masterton - 64.

The early conditions prompted the Government to officially declare a drought ('medium range adverse event') across Wellington, Porirua, Lower Hutt, Upper Hutt and Kāpiti Coast on 23rd December.

Air temperatures

Air temperature is measured at a number of meteorological monitoring sites across the region. It is useful to look at the anomalies (i.e., departures from normal) in average temperatures month by month, in order to understand the climate anomalies.

The graphs below show the monthly average daytime maximum and average nighttime minimum temperature anomalies (i.e., based on every day of the month) for Kelburn (upper panel) and Masterton (lower panel). We can see that the warm season was much hotter than normal. For Wellington, this was the hottest six month period since 1935. This means that anyone younger than 82 years old has never experienced a warm season comparable or hotter than the 2017-2018 season!

2 🖁 Masterton daytime noma 1.5 (emp Masterton 1 nighttime 0.5 0 Dec Feb Nov Jan Mar Apr 0.5 -1

Average daytime and nighttime temperature anomalies for Kelburn (top) and Masterton (bottom) for the warm season period. Very large positive (warm) anomalies were observed over the period, especially in Dec and Jan.

SOURCE: Data from MetService meteorological stations.

Global climate drivers

Climate variability and climate change

People often ask if the variable weather patterns in our region are a result of climate change. While natural climate variability has always been quite pronounced in our region, weather extremes are expected to get worse as a result of human-induced climate change and "global warming" caused by greenhouse gas emissions (<u>http://www.royalsociety.org.nz/expert-advice/papers/yr2016/climate-change-implications-for-new-zealand/</u>).

Some key observations about climate variability and change in our region during the period November 2017 to April 2018:

- The six-month period was the hottest on record for Wellington since 1935. In January, temperature anomalies of almost four degrees were observed in both Wellington and the Wairarapa. January 2018 was the hottest month ever measured in New Zealand by a significant margin, considering all long-term records available for over 100 years.
- Globally, the calendar year 2017 was the third hottest on record. The rate of global warming has more than doubled after the mid-1970s and continues to increase faster than the linear fit (see figure below)
- The sea surface temperatures (following page) have been much warmer than normal around New Zealand, with a marine heat wave present during most of summer and a weak La Niña in the Equatorial Pacific
- A series of high pressure anomalies propagated over New Zealand and remained stationary east of the country, blocking the westerlies and preventing the normal progression of fronts (positive Southern Annual Mode)
- A couple of ex-Tropical cyclones had a major influence with only a short break in between them in February, with record rainfall totals in some areas and significant damage on the Kāpiti coast due to coastal inundation.

2016 was the hottest year on record, followed by 2015 and 2017. The temperature anomalies are calculated in respect to the 20th century 'industrial' average, showing a global anomaly of about 0.82°C in 2017. The trendline shows a linear warming of about 0.7°C per century, explaining about 75% of the total variance of the time series. Since the late 70s the rate of warming has more than doubled, sitting at almost 2°C per century

Global climate drivers and extreme weather events

Climate drivers are global mechanisms that can influence the weather in our region. The El Niño/Southern Oscillation¹ (ENSO) phenomenon remains neutral despite a weak La Niña signature during January (right hand side panel below). The sea ice extent (in white) has been below average during summer, being barely discernible in January (right). A marine heat wave around New Zealand (darker red) is also seen in January (top right).

Sea surface temperature anomalies on 30th Oct 2017 (left), 29th Jan 2018 (right) and 3rd May 2018 (bottom). Warm waters around NZ are seen during the whole period, with a marine heatwave visible in January as one of the hottest anomalies on the planet. A weak La Niña is also seen in the Equatorial Pacific, while the sea ice around Antarctica (white) appears much depleted in January. Source: NOAA/USA.

The pressure anomalies over the six month period show two fundamental climate systems affecting New Zealand (see figure on next page). Firstly, a high pressure anomaly to the east (H) and a low to the north (L) of New Zealand helped produce warm and humid north-easterly winds (shown by the arrow), blocking the westerlies and reducing the influence of cold fronts. This pair of low and high pressure anomalies was boosted by La Niña, while enhancing the local marine heatwave by

¹ <u>https://www.niwa.co.nz/education-+-and-training/schools/students/enln</u>

Whaitua summaries

promoting heat transport from the north. Secondly, anomalous lows around Antarctica (representing the positive phase of the Southern Annual Mode) also helped produce warm and stable weather patterns around New Zealand, via confining the westerlies to the south. The combination of northerly winds and warm water also meant that the atmospheric humidity was much higher than normal, with increased occurrence of thunderstorms and ex-tropical cyclone influences, as discussed below.

2018. Low pressure anomalies to the south (as

Mean sea level pressure anomaly

between November 2017 and April

shown by the L) largely corresponded to a persistent positive phase of the Southern Annular Mode (SAM), which tends to bring warm stable weather to New Zealand during the warm season.

The pair of anomalous high and low pressure areas around New Zealand was strengthened by La Niña, and strengthened the marine heatwave around the country. The arrow shows the prevailing wind anomalies, as a result of the two pressure systems, that helped block the normal westerly flow, reducing the influence of cold fronts from the south.

Tropical influences

The warm season (November to April) also corresponds to the formal tropical cyclone season in the South Pacific. On average, New Zealand is expected to be directly affected by at least one extropical cyclone each season (within a distance less than 550 km), so a minimum of two cyclones affecting the country means an 'above average' season. Two ex-tropical cyclones affected New Zealand during the 2017-2018 season, with both making direct landfall on the South Island in February, and causing significant damage. Ex-TC Fehi crossed the southern part of the South Island early in the month, causing over \$39M in insurance costs. Ex-TC Gita (see figure on the next page) made landfall near Nelson around the 20th, with a serious threat to our region and also causing significant damage on the west coast of both islands. Final insurance costs for Gita are yet to be released (refer to contents cover for photos and description of damage due to coastal inundation on the west coast)

Predicted trajectory of ex-TC Gita during the final approach towards New Zealand, leaving Wellington within the position uncertainty area of risk. The actual observed path was very close to this prediction. Source: MetService.

Seasonal climate outlook update

The ENSO phenomenon is expected to remain neutral for the remainder of the year, with only a couple of models suggesting the possibility of an El Niño forming (see below). Thanks to the influence of ex-tropical cyclones and a very wet summer and autumn, most of the soil moisture across the region remains above average at the time of publication.

The sea surface temperature anomalies around New Zealand remain warmer than average for the most part, although not as strong as they were previously. In the absence of any strong signal coming from the climate drivers, the odds favour normal conditions during winter, with average atmospheric temperatures still tending to remain on the warm side.

The full climate outlook for winter will be released with our regular seasonal briefing by mid-June.

ENSO predictions as of 6 May 2018, showing a continuation of neutral conditions predicted for the remaining of the year. Source: BOM (Australia)

What happened in each whaitua catchment?

Climate and water resource summaries are provided in the following sections for each of the five Wellington region whaitua catchment areas (as shown below). The whaitua catchments provide an important sub-regional basis for environmental management in the Wellington region², and roughly coincide with the different climate and water resource zones.

Click the following links for November 2017 to April 2018 summaries for:

- Wellington Harbour and Hutt Valley
- <u>Te Awarua-o-Porirua</u>
- Kāpiti Coast
- Ruamāhanga Valley
- Wairarapa Coast

Map of the five whaitua catchment areas in the Wellington region. Each whaitua roughly coincides with a climatic zone, expressing the marked east-to-west contrast that we experience in our region.

² <u>http://www.gw.govt.nz/whaitua-committees/</u>

Wellington Harbour and Hutt Valley climate summary

- Total rainfall tended slightly below average in Wainuiomata, about average across the Hutt valley, and slightly above average over Wellington
- Record breaking monthly mean and maximum temperatures
- Very dry November and dry December coincided with water treatment upgrades to set the scene for water restrictions from late November to 9 February
- Number of days over 25°C; Kelburn 18, Wgtn Airport 28, Upper Hutt 30

Kelburn since 1927 Wgtn Airport since 1962

- <u>Rainfall</u>
- <u>River flows</u>

Te Awarua-o-Porirua climate summary

- Much drier than average until early January
- Very wet February, March and April
- Garden watering restrictions in place almost the whole summer

- Rainfall
- River flows

Kāpiti Coast climate summary

- Rainfall balanced out to be around average for the entire period
- But characterised by:
 - very dry conditions in November and December
 - very wet February and March
- Record high temperatures in December and January

- Rainfall
- River flows

Ruamāhanga Valley climate summary

- Very dry conditions in November and December
- Summer temperatures high and record breaking
- February was very wet over 200% of normal rainfall everywhere

- <u>Rainfall</u>
- River flows

Wairarapa Coast climate summary

- **Exceedingly low November rainfall**
- **Temperature records broken**
- **Very wet March**

Eliter and MENS Very low November rainfall totals (15-20% of average):

- Tanawa Hut 13mm lowest since 1972
- 10mm Castlepoint
- Ngaumu 14mm
- Cape Palliser 8mm
- Ngawi 14mm

River flow

Pahaoa River flow was bang on average for the six month period November to April but individual months varied widely.

November, December, January and February had monthly average flows that were 19%, 30%, 55% and 19% of average respectively.

March and April saw flows that were 243% and 110% of normal.

> January maximum temperature Ngawi maximum temperature of

Cape Palliser

Ngawi

Te Wharau

32.6°C on 30 January is 2nd highest for that month since 1972

255mm of rain fell in the upper Whareama catchment (260% of average). It was the 5th wettest March since records began in 1956 Castlepoint

Wet March

December maximum

The Castlepoint maximum temperature of 29.7°C on 5 December is the highest for that month since 1972

Record MEAN temperatures (data record starts 1972):

Riversdale

Beach

- December Ngawi HIGHEST Ngawi HIGHEST • Janaury
 - Castlepoint 2nd highest

Record mean MINIMUM temperatures:

- Ngawi HIGHEST January Castlepoint 2nd highest
- Ngawi 2nd highest • February

Record mean MAXIMUM temperatures:

- December Castlepoint 3rd highest
- Ngawi HIGHEST • January

- Rainfall
- Soil moisture

Rainfall statistics

Rainfall was highly variable over the six months November to April, but ended up around average to slightly above average overall

November and December had well below average rainfall across the region. In contrast, February and March were exceptionally wet with some areas getting over 300% of the normal February rainfall

Whaitua	Location	Nov	Dec	Jan	Feb	Mar	Apr	Nov	-Apr
		%	%	%	%	%	%	(mm)	(%)
Wellington Harbour & Hutt Valley <u>Click to see</u>	Kaitoke	31	54	67	222	113	103	879	90
	Lower Hutt	23	39	113	236	103	140	514	103
	Wainuiomata	21	37	104	131	56	117	564	76
cumulative rainfall	Karori	19	68	113	248	134	129	600	115
<u>pioto</u>	Wellington	14	65	108	288	139	128	465	117
Te Awarua-o-	Battle Hill	32	44	88	323	157	137	620	117
Click to see cumulative rainfall plots	Whenua Tapu	24	52	82	197	132	157	467	104
	Tawa	23	45	107	393	117	162	507	114
Kāpiti Coast	Otaki	26	22	109	265	193	152	561	117
Click to see	Waikanae	26	30	78	239	136	152	604	104
<u>cumulative rainfali</u> plots	Paekakariki	21	27	96	268	254	149	599	117
	Tararua (Otaki headwaters)	44	36	80	206	127	104	2148	92
Ruamāhanga <u>Click to see</u> <u>cumulative rainfall</u> <u>plots</u>	Masterton	14	94	153	223	186	155	457	135
	Featherston	16	63	194	218	97	147	471	114
	Longbush	17	94	142	265	118	151	546	126
	Tararua (Waiohine headwaters)	36	27	105	219	110	120	2676	94
Wairarapa Coast Click to see cumulative rainfall plots	Tanawa Hut	18	89	98	85	258	125	598	118
	Ngaumu	17	98	113	119	139	117	432	101

- Wellington Harbour & Hutt Valley
- <u>Te Awarua-o-Porirua</u>
- Kāpiti Coast
- Ruamāhanga
- Wairarapa Coast

Cumulative rainfall plots

Cumulative rainfall totals for the November 2017 to April 2018 period are detailed for various rain gauges sites across the regional whaitua areas as denoted by the blue trace on the following plots. The November 2016 to April 2017 period is denoted by the red trace and the black trace represents the long-term average rainfall accumulation.

Wellington and Hutt Valley

The plots highlight that the rainfall accumulation during the November to April period was around average.

The exceptionally dry period of November and December is evident, causing the accumulation to track well below average until February when large rainfalls brought it back to near average.

Rainfall in Karori and Lower Hutt during November to April was over 200mm less than the previous year

Porirua Harbour

The plots show that the rainfall accumulation trends in the November to April period at the two sites within the Te Awarua-o-Porirua whaitua area were quite similar, with rainfall totals ending up around 115% of average.

November and December rainfall was very low while February, March and April show sharp increases due to heavy rainfall events.

Rainfall for the period was 33% and 40% less than the previous year at the Tawa Pool and Battle Hill sites respectively.

Kāpiti Coast

Rainfall recorded at Otaki and Waikanae over the November to April period was 121% and 113% of average respectively. Rainfall at Waikanae was 366mm lower than the same period in 2016/17.

Ruamāhanga

The contrast between the start to this 2017/18 period and that of 2016/17 is evident in the two rainfall accumulation traces. November and December 2017 were exceptionally dry. The November to April totals were about 120% of average at both Featherston and Longbush.

Wairarapa Coast

The Tanawa Hut rain gauge in the Wairarapa Coast area showed a similar rainfall accumulation trend as most other areas, starting out with a very dry November and December.

There was also relatively dry spell through mid-January to early March before over 200mm of rain was recorded over three days causing a sharp rise in the accumulation trace.

River flows - averages

Percentage of average river flow for each month and whole of the November 2017 to April 2018 period.

Flows across the region were slightly below normal for the entire warm season. However, the table shows month to month variation was large with November and December very low and February and March very high

		Flow as a percentage of average						
Whaitua	River	Nov	Dec	Jan	Feb	Mar	Apr	Nov-Apr
Wellington Harbour & Hutt Valley	Hutt River - Kaitoke	33	19	52	188	122	138	81
	Hutt River - Taita Gorge	27	17	44	146	120	143	72
	Akatarawa River	43	20	33	152	143	145	80
	Mangaroa River	23	18	60	100	71	149	63
	Waiwhetu Stream	53	51	65	116	75	149	82
	Wainuiomata River	30	26	59	93	53	156	62
Te Awarua-o- Porirua	Porirua	43	43	92	164	102	133	89
	Pauatahanui	34	30	49	104	85	163	70
	Horokiri	31	36	48	75	174	277	92
Kāpiti Coast	Waitohu	27	15	57	190	109	149	72
	Otaki	35	13	47	187	108	133	73
	Mangaone	33	25	43	134	155	209	76
	Waikanae	36	20	36	194	185	222	94
Ruamāhanga	Kopuaranga	26	29	110	41	220	146	87
	Waingawa	28	13	67	132	113	131	73
	Waiohine	31	15	54	153	113	123	72
	Mangatarere	28	19	103	116	175	132	87
	Tauherenikau	31	21	86	176	133	129	87
	Otukura	46	33	71	117	155	146	87
	Ruamāhanga	31	15	74	121	143	136	79
Wairarapa Coast	Pahaoa	19	30	55	19	243	109	100

- Wellington Harbour & Hutt Valley
- <u>Te Awarua-o-Porirua</u>
- Kāpiti Coast
- Ruamāhanga
- Wairarapa Coast

River flows – lowest

Minimum river and stream flows recorded during the November 2017 to April 2018 period. The estimated return period is given for each event.

		Minimum Flow					
Whaitua	River	Flow (m³/s)	Date	Return Period (years)			
Wellington Harbour	Hutt (Kaitoke)	1.103	19 December	5			
	Hutt (Taita Gorge)	3.015	25 January	3			
	Akatarawa	0.841	25 January	5			
	Mangaroa	0.331	19 December	3			
	Wainuiomata	0.160	3 February	3			
	Porirua	0.161	18 December	2			
Te Awarua-o- Porirua	Pauatahanui	0.100	3 February	2			
	Horokiri	0.091	4 February	1			
	Waitohu	0.123	29 December	4			
Kaniti Coost	Otaki	3.601	18 December	5			
Kapiti Coast	Mangaone	0.087	18 December	1			
	Waikanae	0.888	28 December	3			
	Kopuaranga	0.328	19 December	2			
	Waingawa	0.939	19 December	10			
	Waiohine	2.592	19 December	8			
Ruamāhanga	Mangatarere	0.164	19 December	2			
	Tauherenikau	1.168	19 December	2			
	Otukura	0.072	24 January	1			
	Ruamāhanga (Upper)	2.018	19 December	5			
	Ruamāhanga (Lower)	6.973	19 December	5			
Wairarapa Coast	Pahaoa	0.086	4 February	1			

* Analyses have been completed on provisional data which may be subject to change once it is processed and archived.

- Wellington Harbour & Hutt Valley
- <u>Te Awarua-o-Porirua</u>
- Kāpiti Coast
- Ruamāhanga
- Wairarapa Coast

River flows – highest

Maximum river and stream flows recorded during the November 2017 to April 2018 period. The estimated return period is given for each event.

		Maximum Flow					
Whaitua	River	Flow (m ³ /s)	Date	Return Period (years)			
	Hutt (Kaitoke)	174	22 February	1			
	Hutt(Taita Gorge)	450	22 February	1			
Wellington Harbour	Akatarawa	162	22 February	1			
& Hutt Valley	Mangaroa	34	10 April	1			
	Waiwhetu	6	20 February	1			
	Wainuiomata	10	10 April	1			
Te Awarua-o- Porirua	Porirua	20	1 February	1			
	Pauatahanui	10	10 April	1			
	Horokiri	6	10 April	1			
Kāpiti Coast	Otaki	397	12 February	1			
	Mangaone	5.5	12 February	1			
	Waikanae	151	22 February	2			
	Kopuaranga	33	8 March	1			
	Waingawa	159	11 February	1			
	Waiohine	288	1 February	1			
Ruamāhanga	Mangatarere	24	8 March	1			
	Tauherenikau	110	22 February	1			
	Otukura	1.9	11 April	1			
	Ruamāhanga (Upper)	199	8 March	1			
	Ruamāhanga (Lower)	463	8 March	1			
Wairarapa Coast	Pahaoa	223	8 March	1			

* Analyses have been completed on provisional data which may be subject to change once it is processed and archived.

- Wellington Harbour & Hutt Valley
- <u>Te Awarua-o-Porirua</u>
- <u>Kāpiti Coast</u>
- <u>Ruamāhanga</u>
- Wairarapa Coast

Soil moisture content

Wairarapa Coast

November 2017 to April 2018 soil moisture content at monitoring sites at Tanawa Hut in north-east Wairarapa (Wairarapa Coast whaitua) and Tauherenikau racecourse (Ruamāhanga whaitua) are plotted below.

Soil moisture at Tanawa Hutt started to get quite low during December before recovering and sitting around average until high rainfall in March and April brought the levels up. The levels at Tauherenikau started low in response to very dry conditions in November and December, before settling into an average range for the remainder of the warm season.

Drought monitoring

GWRC maintains a drought check webpage with regional anomaly maps and links to live data across the region:

http://www.gwrc.govt.nz/drought-check/

Climate Briefings

Additionally to the extended water resources reports, the Environmental Science department, GWRC, also produces seasonal updates specifically targeting the farming community. Those can be accessed from the main Climate and Water Resource webpage:

http://www.gw.govt.nz/seasonal-climate-and-water-resource-summaries-2/

The Greater Wellington Regional Council's purpose is to enrich life in the Wellington Region by building resilient, connected and prosperous communities, protecting and enhancing our natural assets, and inspiring pride in what makes us unique

For more information contact the Greater Wellington Regional Council:

Wellington office PO Box 11646 Manners Street Wellington 6142 Upper Hutt office PO Box 40847 Upper Hutt 5018

04 526 4133

Masterton office PO Box 41 Masterton 5840

06 378 2484

Follow the Wellington Regional Council

info@gw.govt.nz www.gw.govt.nz

04 384 5708