# Key Native Ecosystem Plan for Otepua-Paruāuku Wetlands 2016-2019







## Contents

| 1. Key | 1. Key Native Ecosystem programme                |    |  |  |  |
|--------|--------------------------------------------------|----|--|--|--|
| 2. Ot  | epua-Paruāuku Wetlands Key Native Ecosystem      | 3  |  |  |  |
| 3. Lar | ndowners, management partners and stakeholders   | 4  |  |  |  |
| 3.1.   | Landowners                                       | 4  |  |  |  |
| 3.2.   | Management partners                              | 4  |  |  |  |
| 3.3.   | Stakeholders                                     | 4  |  |  |  |
| 4. Ecc | blogical values                                  | 6  |  |  |  |
| 4.1.   | Ecological designations                          | 6  |  |  |  |
| 4.2.   | Ecological Significance                          | 6  |  |  |  |
| 4.3.   | Ecological features                              | 8  |  |  |  |
| 5. Th  | reats to ecological values at the KNE site       | 10 |  |  |  |
| 5.1.   | Key threats                                      | 10 |  |  |  |
| 6. Ma  | anagement objectives                             | 13 |  |  |  |
| 7. Ma  | inagement activities                             | 14 |  |  |  |
| 7.1.   | Ecological weed control                          | 14 |  |  |  |
| 7.2.   | Pest animal control                              | 15 |  |  |  |
| 7.3.   | Revegetation                                     | 15 |  |  |  |
| 8. Op  | erational plan                                   | 16 |  |  |  |
| 9. Fui | nding contributions                              | 18 |  |  |  |
| 9.1.   | Budget allocated by GWRC                         | 18 |  |  |  |
| 9.2.   | Budget allocated by KCDC                         | 18 |  |  |  |
| Appe   | ndix 1: Site maps                                | 19 |  |  |  |
| Арреі  | ndix 2: Nationally threatened species list       | 23 |  |  |  |
| Арреі  | ndix 3: Regionally threatened plant species list | 24 |  |  |  |
| Арреі  | ndix 4: Ecological weed species                  | 25 |  |  |  |
| Refer  | ences                                            | 26 |  |  |  |

## 1. Key Native Ecosystem programme

The Wellington region's native biodiversity has declined since people arrived and the ecosystems that support it face ongoing threats and pressures. Regional councils have responsibility to maintain indigenous biodiversity, as well as to protect significant vegetation and habitats of threatened species, under the Resource Management Act 1991 (RMA).

Greater Wellington Regional Council's (GWRC) Biodiversity Strategy<sup>1</sup> sets a framework that guides how GWRC protects and manages biodiversity in the Wellington region to work towards the following vision:

# **Vision** Healthy ecosystems thrive in the Wellington region and provide habitat for native biodiversity

The Strategy provides a common focus across the council's departments, and guides activities relating to biodiversity under this overarching vision and is underpinned by four operating principles and three strategic goals. Goal One drives the delivery of the Key Native Ecosystem (KNE) programme.

#### Goal One

Areas of high biodiversity value are protected or restored

The KNE programme is a non-regulatory voluntary programme that seeks to protect some of the best examples of original (pre-human) ecosystem types in the Wellington region by managing, reducing, or removing threats to their ecological values. Sites with the highest biodiversity values have been identified and prioritised for management. Sites are identified as of high biodiversity value for the purposes of the KNE programme by applying the four ecological significance criteria described below.

| Representativeness                                                                                                                                | Rarity/                                                                                                                                                                 | Diversity                                                                                                         | Ecological context                                                                                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                   | Distinctiveness                                                                                                                                                         |                                                                                                                   |                                                                                                                                                                                 |  |
| The extent to which<br>ecosystems and<br>habitats represent<br>those that were once<br>typical in the region<br>but are no longer<br>common place | Whether ecosystems<br>contain<br>Threatened/At-risk<br>species, or species at<br>their geographic limit,<br>or whether rare or<br>uncommon<br>ecosystems are<br>present | The levels of<br>natural ecosystem<br>diversity present ie,<br>two or more<br>original ecosystem<br>types present | Whether the site<br>provides important<br>core habitat, has<br>high species<br>diversity, or includes<br>an ecosystem<br>identified as a<br>national priority for<br>protection |  |

A site must be identified as ecologically significant using the above criteria and be considered sustainable for management in order to be considered for inclusion in the KNE Programme. Sustainable for the purposes of the KNE programme is defined as: a site where the key ecological processes remain intact or influence the site and resilience of the ecosystem is likely under some realistic level of management.

KNE sites can be located on private or publically owned land. However, Department of Conservation (DOC) managed lands are largely excluded from this programme.

KNE sites are managed in accordance with three-year KNE plans, such as this one, prepared by the GWRC's Biodiversity department in collaboration with the landowners and other stakeholders. These plans outline the ecological values, threats, and management objectives for sites and describe operational activities such as ecological weed and pest animal control. KNE plans are reviewed regularly to ensure the activities undertaken to protect and restore the KNE site are informed by experience and improved knowledge about the site.

# 2. Otepua-Paruāuku Wetlands Key Native Ecosystem

The Otepua-Paruāuku Wetlands KNE site (35ha) is located approximately 2km north of Ōtaki township and west of State Highway 1 (SH1) (See Appendix 1, Map 1). The KNE site supports a number of wetland habitat types including open water, reed/rushland, flax swampland, wetland scrub and swamp forest. The KNE site is within 5km of the Tararua mountain range and within 3km of several other wetland KNE sites. The site is therefore thought to be an important ecological corridor for birds within the wider landscape.

The water that sustains the current wetlands originates from a small catchment fed predominantly by Pukehou Hill, located to the east. The KNE site is part of what was once a substantially larger wetland area, that has been extensively drained and the land reclaimed for agriculture or development. The largest open waterbody of the Otepua-Paruāuku wetlands (known as the Booth wetland) and the wetlands in western part of the KNE site (known as the Main wetland and Western wetland) are bisected by a railway embankment. Past drainage within the KNE site has included a central drain and ring drains around the Main wetland and the construction of the rail embankment and Taylor's Road with their associated culverting. Historically the Booth wetland was actively drained but in 2001 it was re-watered by the landowners.

## 3. Landowners, management partners and stakeholders

GWRC works in collaboration with landowners, management partners and stakeholders where appropriate to achieve shared objectives for the site. GWRC also recognizes that effective working relationships are critical for achieving the management objectives for each KNE site. In preparing this plan GWRC has sought input from landowners, management partners and relevant stakeholders, and will continue to involve them as the plan is implemented.

### 3.1. Landowners

The majority of the Otepua-Paruāuku Wetland KNE site is owned by 12 separate private landowners. Parts of Booth's wetland (east and west of the rail embankment) are covenanted with the Queen Elizabeth II National Trust (QEII). The part of the Main wetland (west of the railway embankment) that is within four other properties is covenanted with the Department of Conservation (See Appendix 1, Map 2).

There are small land parcels managed by NZ Railways Corporation (on behalf of the Crown) associated with the railway embankment.

## **3.2.** Management partners

The management partners are the private landowners, Kāpiti Coast District Council (KCDC), QEII and GWRC.

Within GWRC, the management partners are the Biosecurity and the Biodiversity department. The Biodiversity Department is the overarching lead department for GWRC on the coordination of biodiversity management activities and advice within the KNE site. The Biosecurity department coordinates and carries out pest control activities.

Large areas of the KNE site have been identified by the KCDC as sites of ecological significance (SES)<sup>2</sup>, and by DOC as Recommended Areas for Protection (RAPs). Given its high identified ecological value KCDC are providing ongoing support for the projects within this KNE site, and is the main contact for restoration planting activities.

QEII and private landowners with covenants are management partners given that parts of the KNE site are legally protected by QEII Open Space Covenants. The Booth wetland was re-watered in 2001 to create a 5ha open water body and the landowners have been undertaking large scale restoration works there since.

Many of the private landowners without covenanted land parcels have also committed to restoration activities. With assistance provided from GWRC and KCDC these landowners undertake ecological weed control, pest animal control, fencing and restoration planting.

#### 3.3. Stakeholders

Kiwirail are stakeholders as they manage the NZ Railways Corporation owned land associated with the railway embankment through the centre of the KNE site.

Ngāti Raukawa ki Te Tonga (part of the wider representative iwi group Ngā hapū o Ōtaki) have identified parts of the Otepua-Paruāuku KNE site as having cultural significance for them.<sup>3</sup> The area was known as a place of abode (papa kāinga) and, as valuable a source of fresh water (wai ora), food (mahinga kai), medicinal plants (puna rongoā), weaving materials (puna raranga) and clay (puna uku).

# 4. Ecological values

This section describes the various ecological components and attributes that make the KNE site important. These factors determine the site's value at a regional scale and how managing it contributes to the maintenance of regional biodiversity.

## 4.1. Ecological designations

Table 1, below, lists ecological designations at all or parts of Otepua- Paruāuku KNE site.

| Designation level | Type of designation                                                                                            |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Regional          | The following areas within the KNE site are scheduled under GWRC's proposed Natural Resources Plan (PNRP):     |  |  |  |  |  |
|                   | • Significant natural wetland: Otepua-Paruāuku Wetland (Schedule F3)                                           |  |  |  |  |  |
| District          | Kāpiti Coast District Council has identified parts of the KNE site in the KCDC district plan as:               |  |  |  |  |  |
|                   | <ul> <li>an Ecological Site listed in the Heritage Register (Part of KO13; Pukehou<br/>Swamp)</li> </ul>       |  |  |  |  |  |
|                   | Parts of the KNE site is listed in DOC's Manawatu Plains Ecological District Recommended Areas for Protection: |  |  |  |  |  |
|                   | • RAP9 Pukehou Swamp <sup>4</sup>                                                                              |  |  |  |  |  |
| Other             | Parts of the KNE site are covenanted via QEII Open Space Covenant (11.7 ha) and DOC Covenants (4ha):           |  |  |  |  |  |
|                   | • Open Space Covenants: 5-07-400; 5-07-404                                                                     |  |  |  |  |  |
|                   | Department of Conservation Covenants                                                                           |  |  |  |  |  |
|                   | Parts of the KNE site is scheduled under GWRC's PNRP as:                                                       |  |  |  |  |  |
|                   | Site of Significance to Nga hapu o Ōtaki (Schedule C1)                                                         |  |  |  |  |  |

Table 1: Designations at the Otepua- Paruāuku KNE site

## 4.2. Ecological Significance

The Otepua-Paruāuku KNE site is considered to be of regional significance because:

- It contains highly **representative** ecosystems that were once typical or commonplace in the region
- It contains ecological features that are rare or distinctive in the region
- It contains high levels of ecosystem **diversity**, with several original ecosystem types and several naturally uncommon ecosystems represented within the KNE site boundary
- Its ecological context is valuable at the landscape scale as it contain a variety of interconnected habitats and, provides core/seasonal habitat for threatened indigenous bird species within the KNE site.

#### Representativeness

New Zealand's Land Environments New Zealand (LENZ)5 have identified the majority of the Otepua-Paruāuku KNE site as being in the top threatened land environment category; Acutely Threatened having less than 10% of its indigenous vegetation cover

remaining on a national scale. Some small fragments are classified as Critically Underprotected having less than 20% of its indigenous vegetation cover remaining on a national scale.

Wetlands are now considered an uncommon habitat type in the Wellington region with less than 3% remaining of their original extent6. Furthermore, remnant blocks of kahikatea-pukatea forest present on some of the edges above the wetland water level have recently been identified as being extremely rare in the region with only an estimated 1.12% of its original extent left7.

The Singers and Rogers (2014)8 classification of pre-human vegetation indicates the KNE site comprised several ecosystem types with elements that are still present onsite today. These original ecosystem types are:

- Kohekohe-tawa forest (MF 6) on the dune slopes and on the yellow-brown earth soils surrounding the wetlands. Only 15% of this forest type is left in the Wellington Region<sup>9</sup>
- Swamp Mosaic in the wetland areas which comprise :
  - Flaxland (WL16),
  - *Coprosma*-twiggy tree daisy scrub (WL20)
  - Raupō-reedland (WL19)

#### Rarity/distinctiveness

Nationally threatened and naturally uncommon species include one species of native plant, one species of native fish and five species of native birds (see Appendix 2) including a breeding colony of dabchicks (Tachybaptus ruficollis) on the Booth wetland. There are three regionally threatened plant species (Appendix 3, Table 8).

#### Diversity

As well as the four original ecosystem types being present within the KNE site, there are a rich diversity of natural habitats including small pockets of wetland swamp forest, wetland scrub, and open water. At the junction of these habitats are ecotones where the different plant communities meet. These ecotones provide a range of habitats for animal and plant species and a high species diversity. For example 34 different native fern species have been recorded at the KNE site10.

#### **Ecological context**

KCDC has identified many parts of the KNE site as having high ecological value. The ecological site survey conducted by Wildland Consultants described Pukehou Swamp as the best and largest representative example of wetland-swamp forest associations in the Manawatu Plains Ecological District 11.

The Otepua-Paruāuku KNE site is also a stepping stone for native birdlife and migrating fish, so is an important part of the wider ecological landscape. The KNE site wetlands are feeder wetlands for a tributary of the Waitohu stream. The Otepua-Paruāuku KNE site is also within 500m of the Forest Lakes KNE site and within 3km of the Waitohu Coast KNE site, Lake Waiorongomai KNE site and the Haruātai/Pareomatangi Wetlands KNE site.

## 4.3. Ecological features

#### Habitats (vegetation)

#### **Regenerating Lowland forest**

In the KNE site there are regenerating elements of two lowland forest types. Previously these elements were more widely distributed across the Foxton ecological district. kohekohe-tawa forest is now mostly absent but seedlings have been recently observed. Totara/matai forest is regenerating in the north-east part of the KNE.

Adjacent to the north-eastern edge of the KNE site is a 1ha kohekohe-tawa forest. This forest is providing a valuable natural seed source assisting the natural regeneration of the swamp forest remnants of the KNE site.

#### Swamp forest

There are several small stands of kahikatea-pukatea swamp forest around the edges of the KNE site. These small fragmented and isolated stands are found at the damp flat areas at the foot of the embankments.

Uncommon plants of Kāpiti lowlands found around the edges of the wetlands within the KNE site include rimu (*Dacrydium cupressinum*), narrow-leaved maire (*Nestegis montana*), *Olearia virgata*, four different native orchid species and the giant sedge (*Gahnia xanthocarpa*).

#### Reedland/rushland/sedgeland

These areas mainly consist of raupō (*Typha orientalis*) and *Isolepis prolifer*. Native sedges present include *Carex secta* and *C. virgata*.

#### Flaxland

Flax (*Phormium tenax*) is the dominant cover in the Main wetland. Some toetoe (*Cortaderia toetoe*) is amongst the flax.

#### Wetland scrub

These areas are dominated by mānuka (*Leptospermum scoparium*) and various divaricating *Coprosma* species and wheki tree fern (*Dicksonia squarrosa*).

#### **Open water**

Small areas in the eastern end of Main wetland are standing water. Approximately 5ha of Booth wetlands is open water and provides habitat for wetland birds.

#### **Species**

#### **Birds**

The KNE supports large numbers of native wetland birds. Some of the more notable species include: spoonbill (*Platalea regia*), Australasian harrier (*Circus approximans*), dabchick (*Tachybaptus ruficollis*), NZ scaup (*Aythya novaeseelandiae*), Australasian shoveller (*Anas rhynchotis*), grey teal (*Anas gracilis*), paradise duck (*Tadorna variegata*), pied stilt (*Himantopus himatopus*), pūkeko (*Porphyrio porphyrio*), white faced heron (*Ardea novaehollandiae*), black swan (*Cygnus atratus*), little black shag

(*Phalocrocorax sulcirostris*), black shag (*Phalocrocorax carbo*), spotless crake (*Porzanna tabuensis*) and Australasian bittern (*Botaurus poiciloptus*).

More common forest birds such as kererū (*Hemiphaga chathamensis*), bellbird (*Anthornis melanura*), silvereye (*Zosterops lateralis*), tui (*Prosthemadera novaeseelandiae*). NZ falcon (*Falco novaeseelandiae*) are also present.

#### Fish

An assessment of migratory fish in the KNE site undertaken in 2014<sup>12</sup> found shortfin (*Anguilla australis*) and longfin eel (*Anguilla dieffenbachii*), common bully (*Gobiomorphus cotidianus*), banded kōkopu (*Galaxias fasciatus*) and the crustacean kōura (*Paranephrops planifrons*) present within the KNE site.

## 5. Threats to ecological values at the KNE site

Ecological values can be threatened by human activities, and by introduced animals and plants that change the ecosystem dynamics. The key to protecting and restoring biodiversity as part of the KNE programme is to manage threats to the ecological values at each KNE site.

#### 5.1. Key threats

The main threats identified at the Otepua-Paruāuku KNE site are alterations to the site's hydrology, ecological weeds and pest animals.

Hydrology is the key ecological driver in wetland ecosystems. The extent of wetlands has reduced markedly over the last 100 years through land use change and drainage. The current drainage level maintained by the drainage channels and culverts means that the water level is below its natural level.

Ecological weeds are widespread and abundant throughout the KNE site. They displace indigenous vegetation, affect the structure and composition of ecosystems and can alter hydrological conditions adversely affecting the wetland's native biodiversity values.

Pest animals such as mustelids (*Mustela* spp.), feral cats (*Felis cattus*), rats (*Rattus rattus, R. norvegicus*) and hedgehogs (*Erinacues europaeus*) are a threat to bird species present within the KNE site. Possums (*Trichosurus vulpecula*) can also affect the regeneration of the native vegetation by browsing native seedlings, saplings and trees.

While the key threats discussed in this section are recognised as the most significant, a number of other threats to the KNE site's values have also been identified. Table 2 presents a summary of all known threats to the Otepua-Paruāuku KNE site (including those discussed above), detailing which operational areas they affect, how each threat impacts on ecological values, and whether they will be addressed by the proposed management activities.

| Threat code      | Threat and impact on biodiversity in the KNE site                                                                                                                                                                                                                                                                                                                                                          | Operational area/location |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Ecological weeds |                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| EW-1             | Climbing weeds such as Japanese honeysuckle ( <i>Lonicera japonica</i> ), old man's beard ( <i>Clematis vitalba</i> ), blackberry ( <i>Rubus fruticosus</i> agg.) and convolvulus ( <i>Calystegia sylvatica</i> ) smother and displace native vegetation often causing canopy collapse, inhibit indigenous regeneration, and alter vegetation structure and composition (see full weed list in Appendix 4) | Entire KNE<br>site        |

| Table 2: Summary table of all threats to ecologic | al values present at the Otepua- Paruāuku KNE site |
|---------------------------------------------------|----------------------------------------------------|
|---------------------------------------------------|----------------------------------------------------|

| Threat code  | Threat and impact on biodiversity in the KNE site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Operational area/location |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| EW-2         | Woody weed species displace native vegetation, inhibit<br>indigenous regeneration, and alter vegetation structure and<br>composition. Gorse ( <i>Ulex europaeus</i> ) and willow ( <i>Salix cinerea</i> ,<br><i>S. fragilis</i> )) are abundant in wet and marginally wet areas.<br>Willows are considered ecological transformers due to their<br>ability to trap sediment and alter the hydrology of wetlands.<br>Barberry ( <i>Berberis glaucophylla</i> ) is widespread and abundant on<br>the slopes around the wetlands (see full weed list in Appendix 4) | Entire KNE<br>site        |
| EW-3         | Ground covering ecological weeds such as pampas ( <i>Cortaderia selloana/ C. jubata</i> ) and arum lily ( <i>Zantesdeschia aethiopica</i> ) smother and displace native vegetation, inhibit indigenous regeneration, and alter vegetation structure and composition (see full weed list in Appendix 4)                                                                                                                                                                                                                                                           | Entire KNE<br>site        |
| EW- 4        | Aquatic weeds out-compete native aquatic species and choke watercourses. Hornwort ( <i>Ceratophyllum demersum</i> ) has been located at the edge of the western wetland. Giant reed sweet grass ( <i>Glyceria maxima</i> ) is abundant in the north finger wetland from Forest Lakes Rd through to the north of the Booth wetland                                                                                                                                                                                                                                | A, B, G                   |
| Pest animals |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |
| PA-1         | Hedgehogs prey on native invertebrates <sup>13</sup> , lizards <sup>14</sup> and the eggs <sup>15</sup> and chicks of ground-nesting birds <sup>16</sup>                                                                                                                                                                                                                                                                                                                                                                                                         | Entire KNE<br>site        |
| PA-2*        | House mouse ( <i>Mus musculus</i> ) browse native fruit, seeds and vegetation, and prey on invertebrates. They compete with native fauna for food and can reduce forest regeneration. They also prey on invertebrates, lizards and small eggs and nestlings <sup>17,18</sup>                                                                                                                                                                                                                                                                                     | Entire KNE<br>site        |
| PA-3         | Possums browse palatable canopy vegetation until it can no longer recover <sup>19,20</sup> . This destroys the forest's structure, diversity and function. Possums may also prey on native birds <sup>21</sup> and invertebrates                                                                                                                                                                                                                                                                                                                                 | Entire KNE<br>site        |
| PA-4         | Rats browse native fruit, seeds and vegetation. They compete with native fauna for food and can reduce forest regeneration. They also prey on invertebrates, lizards and native birds <sup>22,23</sup> .                                                                                                                                                                                                                                                                                                                                                         | Entire KNE<br>site        |
| PA-5         | Mustelids (stoats <sup>24,25</sup> ( <i>Mustela erminea</i> ), ferrets <sup>26,27</sup> ( <i>M. furo</i> ) and<br>weasels <sup>28,29</sup> ( <i>M. nivalis</i> )) prey on native birds, lizards and<br>invertebrates, reducing their breeding success and potentially<br>causing local extinctions                                                                                                                                                                                                                                                               | Entire KNE<br>site        |
| PA-6*        | Feral and domestic cats prey on native birds <sup>30</sup> , lizards <sup>31</sup> and invertebrates <sup>32</sup> , reducing native fauna breeding success and potentially causing local extinctions <sup>33</sup>                                                                                                                                                                                                                                                                                                                                              | Entire KNE<br>site        |
| PA-7*        | Rabbits ( <i>Oryctolagus cuniculus</i> ) and hares ( <i>Lepus europaeus</i> ) graze on palatable native vegetation and prevent natural regeneration in some environments <sup>34</sup> . Rabbits are particularly damaging in sand dune environments where they graze native binding plants and restoration plantings. In drier times hares especially, will penetrate into wetland forest areas browsing and reducing regenerating native seedlings                                                                                                             | Entire KNE<br>site        |

| Threat code      | Threat and impact on biodiversity in the KNE site                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Operational area/location |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| PA-8*            | Wasps ( <i>Vespula</i> spp.) adversely impact native invertebrates and<br>birds through predation and competition for food resources.<br>They also affect nutrient cycles in beech forests <sup>35</sup>                                                                                                                                                                                                                                                                                               | Entire KNE<br>site        |
| PA-9             | Exotic waterfowl such as Canada geese ( <i>Branta canadensis</i> ) and feral geese ( <i>Anser anser</i> ) graze native marginal aquatic plants and in high numbers can result in the eutrophication of waterbodies.                                                                                                                                                                                                                                                                                    | В                         |
| Human activities |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| HA-1*            | Agricultural practices, particularly grazing livestock can result in pugging soils, grazing native vegetation inhibiting regeneration, wildlife disturbance and increasing nutrient content of soils and watercourses <sup>36</sup>                                                                                                                                                                                                                                                                    | Outside KNE<br>site       |
| HA-2*            | Plantation forestry on adjoining land parcels to the KNE site have<br>the potential to cause habitat loss or degradation, disturb native<br>wildlife and increase sediment load in watercourses via surface<br>run-off during harvesting operations                                                                                                                                                                                                                                                    | Outside KNE<br>site       |
| HA-3*            | In the surrounding catchment intensive farming is accelerating<br>natural flows of nutrients into the system. Increased nutrient<br>flows can affect native biota and eventually cause the open body<br>of water to eutrophy. The proximity of SH 1 means that<br>stormwater runs into the wetland system bringing pollutants in.<br>These pollutants such as heavy metals and brake dust can have<br>an adverse effect on the native biota, in particular on native<br>aquatic invertebrate diversity | Outside KNE<br>site       |
| Other threats    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| OT-1*            | The current drainage regime means that the hydrology is<br>operating below its natural historical level. This drier regime<br>removes habitat for native wetland plant associations and<br>facilitates the invasion of dry and marginal wetland weed species<br>such as gorse, blackberry and Japanese honeysuckle. These<br>weeds displace the natural habitat of flax, toetoe and wetland<br>scrub, the favoured habitat of native birds                                                             | Entire KNE<br>site        |
| OT-2             | Edge effects affect forest remnants by changing environmental conditions (e.g. soil moisture or temperature levels), changing physical environment (e.g. different plant assemblages compared to the interior) and changing species interactions (e.g. increased predation by invasive species) <sup>37,38,39</sup>                                                                                                                                                                                    | Entire KNE<br>site        |

\*Threats marked with an asterisk are not addressed by actions in the operational plan.

The codes alongside each threat correspond to activities listed in the operational plan (Table 3), and are used to ensure that actions taken are targeted to specific threats. A map of operational areas can be found in Appendix 1, Map 4).

## 6. Management objectives

Objectives help to ensure that management activities carried out are actually contributing to improvements in the ecological condition of the site.

The following objectives will guide the management activities at the Otepua-Paruāuku KNE site.

#### 1. To improve the structure\* and function<sup>+</sup> of native plant communities

#### 2. To improve the habitat for threatened native animals (wetland birds)

\* The living and non-living physical features of an ecosystem. This includes the size, shape, complexity, condition and the diversity of species and habitats within the ecosystem.

<sup>+</sup> The biological processes that occur in an ecosystem. This includes seed dispersal, natural regeneration and the provision of food and habitat for animals.

## 7. Management activities

Management activities are targeted to work towards the objectives above (Section 6) by responding to the threats outlined in Section 5. The broad approach to management activities is described briefly below, and specific actions, with budget figures attached, are set out in the operational plan (Table 3).

It is important to note that not all threats identified in Section 5 can be adequately addressed. This can be for a number of reasons including financial, legal, or capacity restrictions.

For ease of operations the KNE site has been divided into seven operational areas (see Appendix 1, Map 3):

- A: North feeder wetland
- B: South feeder wetland
- C: Booth wetland
- D: East railway embankment
- E: West rail embankment
- F: Main wetland
- G: Western wetland

#### 7.1. Ecological weed control

The objectives of weed control are to reduce the density of ecological weeds in order to maintain native plant dominance and integrity of native plant communities as well as to increase natural native plant regeneration. GWRC will undertake ecological weed control annually throughout the KNE site targeting the species that have the highest ecological impact on the ecosystems. See Appendix 4 for a full list of identified ecological weed species within the KNE site and their ecological impact rating.

High impact climber species, in particular Japanese honeysuckle, blackberry and old man's beard will be controlled annually by GWRC within the entire KNE site. Control in operational areas A, B and C will focus on the swamp forest areas, and regenerating bush above the wetland edges. Where control is undertaken within operational areas F and G all climbers will be control starting from the wetland edges and progressively working towards the centre of the wetlands.

Woody weeds such as wilding pines, gorse, barberry and willow species will be controlled annually by GWRC across the entire KNE site. Some willows may be controlled via aerial herbicide spray due to their inaccessibility. However, this would require landowner approval and resource consent before any action is taken.

The groundcovers species, pampas grass and arum lily will be controlled annually by GWRC around the wetland edges in operational areas F and G.

Reed sweet grass will be controlled by GWRC annually around operational areas A and C.

Kiwirail will control the climbers old man's beard, blackberry and Japanese honeysuckle on the western and eastern rail embankments annually (operational area D and E).

## 7.2. Pest animal control

Pest animal control is undertaken to protect the native bird populations present within the KNE site, including the threatened species and protect the regenerating native vegetation and mature swamp forests.

The pest animal control network includes a total of 28 Pellifeed poison bait stations, 29 DOC 250 and two DOC 200 kill-traps across the KNE site (see Appendix 1 Map 4). The poison bait stations target the control of possums and rats whilst the kill-traps target mustelids, rats and hedgehogs. Landowners check the network on their respective properties on a monthly basis and GWRC undertake an annual service of the overall network.

In operational area C the landowner will cull or engage shooters to cull Canada geese when numbers get too high.

## 7.3. Revegetation

The aim of revegetation work is to improve the structure and function of the native vegetation and to buffer the wetlands from further weed encroachment. In the longer term revegetation will increase the overall native vegetative cover in the local area and link other isolated native vegetation blocks.

KCDC are the primary contact for any revegetation work undertaken in the Otepua-Paruāuku KNE site. KCDC work with landowners to identify suitable planting areas at the Booth wetland (operational area C) and within seven the properties around the Main wetland (operational area F). KCDC are providing approximately 500 eco-sourced plants each year from 2016/17 for the KNE site's landowners to plant and maintain on their properties. Plant species to be planted by landowners include:

Karamū (Coprosma robusta) Kōhuhū (Pittosporum tenuifolium) Kahikatea (Dacrycarpus dacrydioides) Pukatea (Laurelia novaezelandiae) Mānuka (Leptospermum scoparium) Kānuka (Kunzea ericoides) Five-finger (Pseudopanax arboreus) Māhoe (Melicytus ramiflorus) Ngaio (Myoporum laetum)

# 8. Operational plan

The operational plan shows the actions planned to achieve the stated objectives for Otepua- Paruāuku KNE site and their timing and cost over the three-year period from 1 July 2016 to 30 June 2019. The budget for the 2017/17 and 2018/19 years are indicative only and subject to change.

| Table 4: Three-yea | r operational | plan for the | Otepua- Pa | ruāuku KNE site |
|--------------------|---------------|--------------|------------|-----------------|
|--------------------|---------------|--------------|------------|-----------------|

| Objective | Threat        | Activity                                       | Operational<br>area | Delivery                          | Description/detail                                                                                                        | Target                                                        | Timetable and resourcing |         |         |
|-----------|---------------|------------------------------------------------|---------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------|---------|---------|
|           |               |                                                |                     |                                   |                                                                                                                           |                                                               | 2016/17                  | 2017/18 | 2018/19 |
| 1         | EW-1          | Ecological<br>weed control<br>(Climbers)       | А, В,С              | GWRC<br>Biosecurity<br>department | Cut and treat all climbers on slopes in<br>mature forest vegetation and<br>regenerating bush on slopes above<br>wetlands. | Reduction in distribution<br>and abundance of<br>climbers     | \$1,500                  | \$1,500 | \$1,500 |
| 1         | EW-1          | Ecological<br>weed control<br>(Climbers)       | D,E                 | Kiwirail                          | Annual control of old man's beard,<br>blackberry and Japanese honeysuckle                                                 | Reduction in distribution<br>and abundance of<br>climbers     | +                        | +       | +       |
| 1         | EW-1,<br>EW-2 | Ecological<br>weed control<br>(Climbers)       | F,G                 | GWRC<br>Biosecurity<br>department | Progressive control of all climbers from wetland edges towards centre                                                     | Reduction in distribution<br>and abundance of<br>climbers     | \$5,000                  | \$5,000 | \$5,000 |
| 1         | EW-2          | Ecological<br>weed control<br>(Woody<br>weeds) | Entire KNE<br>site  | GWRC<br>Biosecurity<br>department | Basal or aerial spray willows in Main<br>wetland. Basal spray or cut and treat all<br>other woody species                 | Reduction in distribution<br>and abundance of woody<br>weeds  | \$1,500                  | \$1,500 | \$1,500 |
| 1         | EW-3          | Ecological<br>weed control<br>(Groundcovers)   | F,G                 | GWRC<br>Biosecurity<br>department | Control of arum lily and pampas grass                                                                                     | Reduction in distribution<br>and abundance of<br>groundcovers | \$500                    | \$500   | \$500   |
| 1         | EW-4          | Ecological<br>weed control<br>(Aquatics)       | А,В                 | GWRC<br>Biosecurity<br>department | Spray reed sweet grass in north feeder<br>and Booth wetlands (A and C)                                                    | Reduction in distribution<br>and abundance of<br>aquatics     | \$500                    | \$500   | \$500   |

| Objective | Threat                          | Activity               | Operational area   | Delivery                          | Description/detail                                                                          | Target                                                       | Timetable | and resou | rcing    |
|-----------|---------------------------------|------------------------|--------------------|-----------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------|-----------|----------|
|           |                                 |                        |                    |                                   |                                                                                             |                                                              | 2016/17   | 2017/18   | 2018/19  |
| 1, 2      | PA-1,<br>PA-3,<br>PA-4,<br>PA-5 | Pest animal<br>control | Entire KNE<br>site | Landowners                        | Bait station and trap maintenance. All traps checked monthly                                | Possums <1% RTC *<br>Rats < 10% TTI**<br>Mustelids <5% TTI** | Nil       | Nil       | Nil      |
| 1,2       | PA-1,<br>PA-3,<br>PA-4,<br>PA-5 | Pest animal<br>control | Entire KNE<br>site | GWRC<br>Biosecurity<br>department | Bait station and trap annual service and periodic bait provision and delivery to landowners | Possums <1% RTC *<br>Rats < 10% TTI**<br>Mustelids <5% TTI** | \$1,000   | \$1,000   | \$1,000  |
| 1         | OT-2                            | Revegetation           | Entire KNE<br>site | KCDC                              | Provision of all plants to landowners.<br>500 eco-sourced plants provided<br>annually       | >70% survival rate after<br>year 1                           | \$1,500^  | \$1,500^  | \$1,500^ |
| 1         | OT-2                            | Revegetation           | Entire KNE<br>site | Landowners                        | Planting and maintenance of native plants                                                   | >70% survival rate after<br>year 1                           | Nil       | Nil       | Nil      |
| Total     |                                 |                        |                    |                                   |                                                                                             |                                                              | \$11,500  | \$11,500  | \$11,500 |

^ subject to KCDC riparian fund

<sup>+</sup> subject to Kiwirail funding and cannot be detailed at this time

\*RTC = Residual Trap Catch. The control regime has been created to control possums to this level but monitoring will not be undertaken. Experience in the use of this control method indicates this target will be met.

\*\*TTI = Tracking Tunnel Index. The control regime has been created to control rats to this level but monitoring will not be undertaken. Experience in the use of this control method indicates this target will be met.

# 9. Funding contributions

## 9.1. Budget allocated by GWRC

The budget for the 2017/18 and 2018/19 years are indicative only and subject to change.

| Management activity     | Timetable and resourcing |          |          |  |
|-------------------------|--------------------------|----------|----------|--|
|                         | 2016/17                  | 2017/18  | 2018/19  |  |
| Ecological weed control | \$9,000                  | \$9,000  | \$9,000  |  |
| Pest animal control     | \$1,000                  | \$1,000  | \$1,000  |  |
| Total                   | \$10,000                 | \$10,000 | \$10,000 |  |

Table 5: GWRC allocated budget for the Otepua- Paruāuku KNE site

## 9.2. Budget allocated by KCDC

Budget allocations for the 2017/18 and 2018/19 years are <u>indicative only</u> and subject to successful applications to contestable funds and signing Memorandum of Understanding agreements with landowners.

| Management activity | Timetable and resourcing |         |         |
|---------------------|--------------------------|---------|---------|
|                     | 2016/17                  | 2017/18 | 2018/19 |
| Revegetation        | \$1,500                  | \$1,500 | \$1,500 |
| Total               | \$1,500                  | \$1,500 | \$1,500 |

# Appendix 1: Site maps



Map 1: The Otepua-Paruāuku KNE site boundary



Map 2: Land protected by covenants within the Otepua-Paruāuku KNE site



Map 3: Operational areas in the Otepua-Paruāuku KNE site



Map 4: Pest animal control in the Otepua-Paruāuku KNE site

## **Appendix 2: Nationally threatened species list**

The New Zealand Threat Classification System lists species according to their threat of extinction. The status of each species group (plants, reptiles, etc) is assessed over a three-year cycle<sup>40</sup>, with the exception of birds which are assessed on a five-year cycle<sup>41</sup>. Species are regarded as Threatened if they are classified as Nationally Critical, Nationally Endangered or Nationally Vulnerable. They are regarded as At Risk if they are classified as Declining, Recovering, Relict or Naturally Uncommon. The following table lists Threatened and At Risk species that are resident in, or regular visitors to, the Otepua- Paruāuku KNE site.

| Scientific name                  | Common name            | Threat status                         | Observation                        |
|----------------------------------|------------------------|---------------------------------------|------------------------------------|
| Plants(vascular) <sup>42</sup> ( |                        |                                       |                                    |
| Streblus banksii                 | Large leaved milk tree | At Risk - Relict                      | Enright 2002 <sup>43</sup>         |
| Birds <sup>44</sup>              |                        |                                       |                                    |
| Botaurus<br>poiciloptilus        | Australasian bittern   | Threatened - Nationally<br>Endangered | McLaren pers comm<br>2014          |
| Falco<br>novaeseelandiae         | New Zealand falcon     | Threatened - Nationally<br>Vulnerable | Graeme Booth, pers<br>comm 2016    |
| Platalea regia                   | Royal spoonbill        | At Risk - Naturally<br>Uncommon       | Graeme Booth, pers<br>comm 2016    |
| Porzana abuensis<br>plumbea      | Spotless crake         | At Risk - Relict                      | Peace and Haughton, pers comm 2015 |
| Tachybaptus<br>ruficolis         | Dabchick               | Threatened - Nationally<br>Vulnerable | Graeme Booth, pers<br>comm 2016    |
| Freshwater fish <sup>45</sup>    |                        |                                       |                                    |
| Anguilla<br>diffenbachii         | Longfin eel            | At Risk - Declining                   | McEwan 2014 <sup>46</sup>          |

Table 7: Threatened and At Risk species at the Otepua- Paruāuku KNE site.

# **Appendix 3: Regionally threatened plant species list**

The following table lists regionally threatened species that have been recorded in the Otepua- Paruāuku KNE site. Native plant species have been identified in the Plant Conservation Strategy, Wellington Conservancy 2004-2010<sup>47</sup>.

| Scientific name      | Common name            | Threat status | Observation                |  |
|----------------------|------------------------|---------------|----------------------------|--|
| Plants <sup>48</sup> |                        |               |                            |  |
| Belcnum parrisiae    | Rasp fern              | Sparse        | Enright 2002 <sup>49</sup> |  |
| Hypolepsis distans   | N/A                    | Sparse        | Enright 2002               |  |
| Streblus banksii     | Large leafed milk tree | Sparse        | Enright 2002               |  |

Table 8: Regionally threatened plant species recorded in the Otepua- Paruāuku KNE site.

# **Appendix 4: Ecological weed species**

The following table lists key ecological weed species that have been recorded in the Otepua- Paruāuku KNE site.

| Scientific Name                     | Common<br>Name                    | Habit            | Relative<br>impact | Notes                   |
|-------------------------------------|-----------------------------------|------------------|--------------------|-------------------------|
| Berberis<br>glaucophylla            | Barberry                          | Woody weed       | Moderate           | Widespread and abundant |
| Calystegia<br>silvatica             | Convolvulus/<br>Great<br>bindweed | Climber          | Moderate           | Scattered and abundant  |
| Ceratophyllum<br>demersum           | Hornwort                          | Aquatic          | High               | Localised and abundant  |
| Clematis vitalba                    | Old man's<br>beard                | Climber          | Very high          | Patchy and sparse       |
| Cortaderia<br>selloana/C.<br>jubata | Pampas grass                      | Groundcover      | Very high          | Localised and sparse    |
| Glyceria<br>maxima                  | Giant reed<br>sweet grass         | Marginal aquatic | High               | Localised and abundant  |
| Leycestaria<br>formosa              | Himalayan<br>honeysuckle          | Groundcover      | Moderate           | Localised and abundant  |
| Lonicera<br>japonica                | Japanese<br>honeysuckle           | Climber          | Very High          | Widespread and abundant |
| Pinus radiata                       | Radiata pine                      | Woody weed       | Moderate           | Scattered and sparse    |
| *Pittosporum<br>crassifolium        | Karo                              | Woody weed       | High               | Localised and sparse    |
| Prunus<br>campanulata               | Taiwan cherry                     | Woody weed       | Moderate           | Localised and sparse    |
| Rubus fruticosus agg.               | Blackberry                        | Climber          | High               | Widespread and abundant |
| Salix cinerea                       | Grey willow                       | Woody weed       | Very high          | Localised and abundant  |
| Salix fragilis                      | Crack willow                      | Woody weed       | High               | Scattered and abundant  |
| Sambucus nigra                      | Elderberry                        | Woody weed       | Low                | Localised and sparse    |
| Schedonorus<br>arundinaceus         | Tall fescue                       | Groundcover      | Low                | Widespread and abundant |
| Ulex europaeus                      | Gorse                             | Woody weed       | High               | Widespread and abundant |

| Table 9: Ecological weed species reco | rded in the Otepua | - Paruauku K | (NE site |
|---------------------------------------|--------------------|--------------|----------|
|---------------------------------------|--------------------|--------------|----------|

\* Denotes a non-local native plant

## References

<sup>1</sup> Greater Wellington Regional Council. 2016. Biodiversity Strategy 2015-25. 25 p.

<sup>5</sup>New Zealand Threat Classification System (NZTCS) <u>http://www.doc.govt.nz/about-us/science-publications/conservation-publications/nz-threat-classification-system/</u>

<sup>6</sup> Ausseil A-G, Gerbeaux P, Chadderton W, Stephens T, Brown D, Leathwick J. 2008. Wetland ecosystems of national importance for biodiversity. Landcare Research Contract Report LC0708/158 for Chief Scientist, Department of Conservation.

<sup>7</sup> Crisp P, Singers NJD. 2015 (in prep). Terrestrial ecosystems of the Wellington region.

<sup>8</sup> Singers NJD, Rogers GM. 2014. A classification of New Zealand's terrestrial ecosystems. Science for Conservation No. 325. Department of Conservation, Wellington. 87p.

<sup>9</sup> Crisp P, Singers NJD. 2015 (in prep). Terrestrial ecosystems of the Wellington region.

<sup>10</sup> Wellington Botanical Society. 2015. May 2015 newsletter p17.

<sup>11</sup> Wildlands Consultants. 2003. Kapiti Coast District Council 2002-2003 Ecological Sites

<sup>12</sup> McEwan A. 2014. Assessment of migratory native fish passage through the O te Pua Wetland system, Otaki.

<sup>13</sup> Jones C, Sanders MD. 2005. European hedgehog. In: King CM ed. The handbook of New Zealand mammals. 2nd edition. Melbourne, Oxford University Press. Pp. 81-94.

<sup>14</sup> Spitzen-van der Sluijs AM, Spitzen J, Houston D, Stumpel AHP. 2009. Skink predation by hedgehogs at Macraes Flat, Otago, New Zealand. New Zealand Journal of Ecology 33(2): 205-207.

<sup>15</sup> Jones C, Moss K, Sanders M. 2005. Diet of hedgehogs (*Erinaceus europaeus*) in the upper Waitaki Basin, New Zealand. Implications for conservation. New Zealand Journal of Ecology 29(1): 29-35.

<sup>16</sup> Jones C, Sanders MD. 2005. European hedgehog. In: King CM ed. The handbook of New Zealand mammals. 2nd edition. Melbourne, Oxford University Press. Pp. 81–94

<sup>17</sup> Ruscoe WA, Murphy EC. 2005. House mouse. In: King CM ed. The handbook of New Zealand mammals. Oxford University Press. Pp. 204-221.

<sup>18</sup> Newman DG. 1994. Effect of a mouse *Mus musculus* eradication programme and habitat change on lizard populations on Mana Island, New Zealand, with special reference to McGregor's skink, *Cyclodina macgregori*. New Zealand Journal of Ecology 21: 443-456.

<sup>19</sup> Pekelharing CJ, Parkes JP, Barker RJ. 1998. Possum (*Trichosurus vulpecula*) densities and impacts on fuchsia (*Fuchsia excorticata*) in South Westland, New Zealand. New Zealand Journal of Ecology 22(2). 197-203.

<sup>20</sup> Nugent G, Sweetapple P, Coleman J, Suisted P. 2000. Possum feeding patterns. dietary tactics of a reluctant folivore. In: Montague TL ed. The brushtail possum: Biology, impact and management of an introduced marsupial. Lincoln, Manaaki Whenua Press. Pp. 10-19.

<sup>21</sup> Sweetapple PJ, Fraser KW, Knightbridge PI. 2004. Diet and impacts of brushtail possum populations across the invasion front in South Westland, New Zealand. New Zealand Journal of Ecology 28(1): 19-33.

<sup>22</sup> Daniel MJ. 1973. Seasonal diet of the ship rat (*Rattus r. rattus*) in lowland forest in New Zealand. Proceedings of the New Zealand Ecological Society 20: 21-30.

<sup>23</sup> Innes JG. 2005. Ship rat. In: King CM ed. The handbook of New Zealand mammals. Oxford University Press. Pp.187-203.

<sup>24</sup> Murphy E, Maddigan F, Edwards B, Clapperton K. 2008. Diet of stoats at Okarito Kiwi Sanctuary, South Westland, New Zealand. New Zealand Journal of Ecology 32(1): 41-45.

<sup>25</sup> King CM, Murphy EC. 2005. Stoat. in: King CM ed. The handbook of New Zealand mammals. Oxford University Press. Pp.261-287.

<sup>26</sup> Ragg JR. 1998. Intraspecific and seasonal differences in the diet of feral ferrets (*Mustela furo*) in a pastoral habitat, east Otago, New Zealand. New Zealand Journal of Ecology 22(2): 113-119.

<sup>&</sup>lt;sup>2</sup> Kapiti Coast District Council. 1999. Kapiti Coast District Plan Heritage Register E: Ecological Sites (areas of significant indigenous vegetation and significant habitats of indigenous flora).

<sup>&</sup>lt;sup>3</sup> Greater Wellington Regional Council. 2015. Proposed Natural Resources Plan for the wellington region Tikanga Taiao o te Upoko o te Ika a Maui: http://www.gw.govt.nz/proposed-natural-resources-plan/

<sup>&</sup>lt;sup>4</sup> Ravine DA. 1995. Manawatu Plains Ecological District. Survey Report for the Protected Natural Areas Programme. New Zealand Protected Natural Areas Programme No. 33. Department of Conservation. Wanganui. 350 pp.

<sup>27</sup> Clapperton BK, Byron A. 2005. Feral ferret. In: King CM ed. The handbook of New Zealand mammals. Oxford University Press. Pp. 294-307.

<sup>28</sup> King CM. 2005. Weasel. In: King CM ed. The handbook of New Zealand mammals. Oxford University Press. Pp.287-294.

<sup>29</sup> King CM, Flux M, Innes JG, Fitzgerald BM. 1996. Population biology of small mammals in Pureora Forest Park: 1. Carnivores (*Mustela erminea, M.furo, M.nivalis and Felis catus*). New Zealand Journal of Ecology 20(2): 241-251.

<sup>30</sup> King CM, Flux M, Innes JG, Fitzgerald BM. 1996. Population biology of small mammals in Pureora Forest Park: 1. Carnivores (*Mustela erminea, M.furo, M.nivalis and Felis catus*). New Zealand Journal of Ecology 20(2): 241-251.

<sup>31</sup> Reardon JT, Whitmore N, Holmes KM, Judd LM, Hutcheon AD, Norbury G, Mackenzie DI. 2012. Predator control allows critically endangered lizards to recover on mainland New Zealand. New Zealand Journal of Ecology 36(2): 141-150.

<sup>32</sup> King CM, Flux M, Innes JG, Fitzgerald BM. 1996. Population biology of small mammals in Pureora Forest Park: 1. Carnivores (*Mustela erminea, M.furo, M.nivalis and Felis catus*). New Zealand Journal of Ecology 20(2): 241-251.

<sup>33</sup> Gillies C, Fitzgerald BM. 2005. Feral cat. In: King CM ed. The handbook of New Zealand mammals. Oxford University Press. Pp.308-326.

<sup>34</sup> Norbury G, Flux JEC 2005. Brown hare. In: King CM ed. The handbook of New Zealand mammals. Oxford University Press. Pp.151-158.

<sup>35</sup> Beggs JR. 2001. The ecological consequences of social wasps (Vespula spp.) invading an ecosystem that has an abundant carbohydrate resource. Biological Conservation 99: 17-28.

<sup>36</sup> Smale MC, Dodd MB, Burns BR, Power IL. 2008. Long-term impacts of grazing on indigenous forest remnants on North Island hill county, New Zealand. New Zealand Journal of Ecology 32(1). 57-66.

<sup>37</sup> Young A, Mitchell N. 1994. Microclimate and vegetation edge effects in a fragmented podocarpbroadleaf forest in New Zealand. Biological Conservation 67: 63-72.

<sup>38</sup> Norton DA. 2002. Edge effects in a lowland temperate New Zealand rainforest. DOC Science Internal Series 27. Department of Conservation, Wellington.

<sup>39</sup> Norton DA. 2002. Edge effects in a lowland temperate New Zealand rainforest. DOC Science Internal Series 27. Department of Conservation, Wellington.

<sup>40</sup> Department of Conservation. 2008. New Zealand Threat Classification System manual

<sup>41</sup> Hugh Robertson, Department of Conservation, pers comm 2015.

<sup>42</sup> de Lange PJ, Rolfe JR, Champion PD, Courtney SP, Heenan PB, Barkla JW, Cameron EK, Norton DA, Hitchmough RA 2013. Conservation status of New Zealand indigenous vascular plants, 2012. New Zealand Threat Classification Series 3. 70 p.

<sup>43</sup> Enright P. 2002. Vascular plants swamp area on the property at 73 Forest lakes Road North of Otaki.

<sup>44</sup> Robertson HA, Dowding JE, Elliot GP, Hitchmough RA, Miskelly CM, O'Donnell CFS, Powlesland RG, Sagar PM, Scofield P, Taylor GA. 2013. Conservation status of New Zealand birds, 2012. New Zealand Threat Classification Series 4. 22 p.

<sup>45</sup> Goodman JM, Dunn NR, Ravenscroft PJ, Allibone RM, Boubee JAT, David BO, Griffiths M, Ling N, Hitchmough RA, Rolfe JR. 2014. Conservation status of New Zealand freshwater fish, 2013. New Zealand Threat Classification Series 7. 12 p.

<sup>46</sup> McEwan A. 2014. Assessment of migratory native fish passage through the O te Pua Wetland system, Otaki.

<sup>47</sup> Sawyer JWD. 2004. Plant conservation strategy, Wellington Conservancy (excluding Chatham Islands),
 2004–2010. Department of Conservation, Wellington. 91 p.

<sup>48</sup> Sawyer JWD. 2004. Plant Conservation Strategy. Wellington Conservancy (excluding Chatham Islands)
 2004-2010. Department of Conservation, Wellington. 91 p.

<sup>49</sup> Enright P. 2002. Vascular plants swamp area on the property at 73 Forest lakes Road North of Otaki.

The Greater Wellington Regional Council's purpose is to enrich life in the Wellington Region by building resilient, connected and prosperous communities, protecting and enhancing our natural assets, and inspiring pride in what makes us unique

#### **Greater Wellington Regional Council:**

Wellington office PO Box 11646 Manners Street Wellington 6142

T 04 384 5708 F 04 385 6960 Upper Hutt office PO Box 40847 Upper Hutt 5018

T 04 526 4133 F 04 526 4171 Masterton office PO Box 41 Masterton 5840

T 06 378 2484 F 06 378 2146 Follow the Wellington Regional Council

info@gw.govt.nz www.gw.govt.nz June 2017 GW/BD-G-17/77

